We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We developed a real-world evidence (RWE) based Markov model to project the 10-year cost of care for patients with depression from the public payer’s perspective to inform early policy and resource planning in Hong Kong.
Methods
The model considered treatment-resistant depression (TRD) and development of comorbidities along the disease course. The outcomes included costs for all-cause and psychiatric care. From our territory-wide electronic medical records, we identified 25,190 patients with newly diagnosed depression during the period from 2014 to 2016, with follow-up until December 2020 for real-world time-to-event patterns. Costs and time varying transition inputs were derived using negative binomial and parametric survival modeling. The model is available as a closed cohort, which studies a fixed cohort of incident patients, or an open cohort that introduces new patients every year. Utilities values and the number of incident cases per year were derived from published sources.
Results
There were 9,217 new patients with depression in 2023. Our closed cohort model projected that the cumulative cost of all-cause and psychiatric care for these patients would reach USD309 million and USD58 million by 2032, respectively. In our open cohort model, 55,849 to 57,896 active prevalent cases would cost more than USD322 million and USD61 million annually in all-cause and psychiatric care, respectively. Although less than 20 percent of patients would develop TRD or its associated comorbidities, they contribute 31 to 54 percent of the costs. The key cost drivers were the number of annual incident cases and the probability of developing TRD and associated comorbidities and of becoming a low-intensity service user. These factors are relevant to early disease stages.
Conclusions
A small proportion of patients with depression develop TRD, but they contribute to a high proportion of the care costs. Our projection also demonstrates the application of RWE to model the long-term costs of care, which can aid policymakers in anticipating foreseeable burden and undertaking budget planning to prepare for future care needs.
Depression and cardiovascular disease (CVD) are associated with each other but their relationship remains unclear. We aim to determine whether genetic predisposition to depression are causally linked to CVD [including coronary artery disease (CAD), myocardial infarction (MI), stroke and atrial fibrillation (AF)].
Methods
Using summary statistics from the largest genome-wide association studies (GWAS) or GWAS meta-analysis of depression (primary analysis: n = 500 199), broad depression (help-seeking behavior for problems with nerves, anxiety, tension or depression; secondary analysis: n = 322 580), CAD (n = 184 305), MI (n = 171 875), stroke (n = 446 696) and AF (n = 1 030 836), genetic correlation was tested between two depression phenotypes and CVD [MI, stroke and AF (not CAD as its correlation was previously confirmed)]. Causality was inferred between correlated traits by Mendelian Randomization analyses.
Results
Both depression phenotypes were genetically correlated with MI (depression: rG = 0.169; p = 9.03 × 10−9; broad depression: rG = 0.123; p = 1 × 10−4) and AF (depression: rG = 0.112; p = 7.80 × 10−6; broad depression: rG = 0.126; p = 3.62 × 10−6). Genetically doubling the odds of depression was causally associated with increased risk of CAD (OR = 1.099; 95% CI 1.031–1.170; p = 0.004) and MI (OR = 1.146; 95% CI 1.070–1.228; p = 1.05 × 10−4). Adjustment for blood lipid levels/smoking status attenuated the causality between depression and CAD/MI. Null causal association was observed for CVD on depression. A similar pattern of results was observed in the secondary analysis for broad depression.
Conclusions
Genetic predisposition to depression may have positive causal roles on CAD/MI. Genetic susceptibility to self-awareness of mood problems may be a strong causal risk factor of CAD/MI. Blood lipid levels and smoking may potentially mediate the causal pathway. Prevention and early diagnosis of depression are important in the management of CAD/MI.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.