We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We reviewed outcomes in all 36 consecutive children <5 kg supported with the Berlin Heart pulsatile ventricular assist device at the University of Florida, comparing those with acquired heart disease (n = 8) to those with congenital heart disease (CHD) (n = 28).
Methods:
The primary outcome was mortality. The Kaplan-Meier method and log-rank tests were used to assess group differences in long-term survival after ventricular assist device insertion. T-tests using estimated survival proportions were used to compare groups at specific time points.
Results:
Of 82 patients supported with the Berlin Heart at our institution, 49 (49/82 = 59.76%) weighed <10 kg and 36 (36/82 = 43.90%) weighed <5 kg. Of 36 patients <5 kg, 26 (26/36 = 72.22%) were successfully bridged to transplantation. (The duration of support with ventricular assist device for these 36 patients <5 kg was [days]: median = 109, range = 4–305.) Eight out of 36 patients <5 kg had acquired heart disease, and all eight [8/8 = 100%] were successfully bridged to transplantation. (The duration of support with ventricular assist device for these 8 patients <5 kg with acquired heart disease was [days]: median = 50, range = 9–130.) Twenty-eight of 36 patients <5 kg had congenital heart disease. Eighteen of these 28 [64.3%] were successfully bridged to transplantation. (The duration of support with ventricular assist device for these 28 patients <5 kg with congenital heart disease was [days]: median = 136, range = 4–305.) For all 36 patients who weighed <5 kg: 1-year survival estimate after ventricular assist device insertion = 62.7% (95% confidence interval = 48.5–81.2%) and 5-year survival estimate after ventricular assist device insertion = 58.5% (95% confidence interval = 43.8–78.3%). One-year survival after ventricular assist device insertion = 87.5% (95% confidence interval = 67.3–99.9%) in acquired heart disease and 55.6% (95% confidence interval = 39.5–78.2%) in CHD, P = 0.036. Five-year survival after ventricular assist device insertion = 87.5% (95% confidence interval = 67.3–99.9%) in acquired heart disease and 48.6% (95% confidence interval = 31.6–74.8%) in CHD, P = 0.014.
Conclusion:
Pulsatile ventricular assist device facilitates bridge to transplantation in neonates and infants weighing <5 kg; however, survival after ventricular assist device insertion in these small patients is less in those with CHD in comparison to those with acquired heart disease.
Cardiopulmonary bypass (CPB) is highly technical and complex and accident and error can occur due to malfunction of equipment and/or human factors.Since its first successful clinical use in 1953, incremental improvements in the heart lung machine have resulted in a decline of perfusion related accidents. Safety practices have been demonstrated to reduce the incidence of error and equipment fault and need to be constantly reviewed and their implementation should be regularly rehearsed by all members of the intraoperative team and not only by the perfusion team. Institutional protocols, compliance with instructions for use of equipment and step-by-step processes to deal with error and unforeseen events will minimize their impact.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.