We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The importance of variance modelling is now widely known for the analysis of microarray data. In particular the power and accuracy of statistical tests for differential gene expressions are highly dependent on variance modelling. The aim of this paper is to use a structural model on the variances, which includes a condition effect and a random gene effect, and to propose a simple estimation procedure for these parameters by working on the empirical variances. The proposed variance model was compared with various methods on both real and simulated data. It proved to be more powerful than the gene-by-gene analysis and more robust to the number of false positives than the homogeneous variance model. It performed well compared with recently proposed approaches such as SAM and VarMixt even for a small number of replicates, and performed similarly to Limma. The main advantage of the structural model is that, thanks to the use of a linear mixed model on the logarithm of the variances, various factors of variation can easily be incorporated in the model, which is not the case for previously proposed empirical Bayes methods. It is also very fast to compute and is adapted to the comparison of more than two conditions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.