We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Western Zhou Dynasty (ca. 1046–771 BC) was established soon after conquering the Shang Dynasty (ca. 1600–1046 BC) and brought about the earliest enfeoffment system in Chinese history. Yan was one of the vassal states of the same clan as Zhou. According to historical records, the capital of Yan state was located near Yan mountain, which is now known as the Liulihe site in the Fangshan District, Beijing. This study carries out the high-precision dating of two newly discovered Western Zhou Dynasty noble tombs at the Liulihe site. The man in tomb M1902 participated in the groundbreaking ceremony of Yan’s capital according to inscriptions on the bronze vessel found in this tomb. Samples of different materials, especially different parts of human skeletons from the tombs, were selected to form a sample series in chronological order. Wiggle-matching models were established in OxCal program based on the growth and development time of different teeth and bones of human skeletons. More accurate ages were acquired for the death of the individuals. The results indicate that the most probable distribution range of the death date of the individual in M1902 is about 1045–1010 BC. The radiocarbon dates of M1902 give important chronological information about the founding of Yan state, and they are very close to those of the year in which King Wu of Zhou conquered the Shang Dynasty.
We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e. $Nu \sim a^{-1} Re_{os}^\beta$ where the Nusselt number $Nu$ measures the global heat transport, $a$ is the dimensionless vibration amplitude, $Re_{os}$ is the oscillational Reynolds number and $\beta$ is the universal exponent. We find that the dynamics of boundary layers plays an essential role in vibroconvective heat transport and the $Nu$-scaling exponent $\beta$ is determined by the competition between the thermal boundary layer (TBL) and vibration-induced oscillating boundary layer (OBL). Then a physical model is proposed to explain the change of scaling exponent from $\beta =2$ in the TBL-dominant regime to $\beta = 4/3$ in the OBL-dominant regime. Our finding elucidates the emergence of universal constitutive laws in vibroconvective turbulence, and opens up a new avenue for generating a controllable effective heat transport under microgravity or even microfluidic environment in which the gravity effect is nearly absent.
First principles was carried out studying the properties of (Ti, Nb)C compounds based on density functional theory. The integration of mechanical behavior, electronic structures, and thermodynamic properties can be optimized by mediating the concentration of the titanium alloying element. The results revealed that these transition metal compounds were stable with the negative formation energy. Nb0.5Ti0.5C (29.15 GPa) demonstrated the largest hardness characterized by moduli (B, G) because of the stable shell configuration. NbC exhibited the strongest anisotropy from the universal anisotropic index (AU) and three-dimensional surface contours. TixNb1−xC compounds displayed relatively strong stress responses along the [001], [110], and [111] directions. Due to the weakening p–d bonding, the ideal tensile strength gradually decreased with the increasing titanium concentration. The electronic structures revealed that the bonding characteristics of the (Ti, Nb)C compounds were a mixture of metallic and covalent bonds. On the other hand, NbC and TiC exhibited a minimum (740.55 K) and maximum (919.29 K) Debye temperature, indicating the stronger metalic bonds of NbC and covalent bonds of TiC.
This is a case-control study to investigate the prevalence, characteristics, and risk factors of pain in patients with Parkinson's disease (PD).
Methods:
A total of 200 PD patients from eastern China were enrolled in our study. Accordingly, 200 healthy elderly adults were recruited as controls. The characteristics of pain were collected by using the Visual Analog Scale, Brief Pain Inventory (BPI), SF-36 Bodily Pain Scale, Unified Parkinson's Disease Rating Scale, Hoehn–Yahr Scale (H-Y), Hamilton Depression Scale, and Leeds Assessment of Neuropathic Symptoms and Signs.
Results:
Of the 200 PD patients, pain was complained by 106 patients (53%). According to the SF-36 Bodily Pain Scale, pain morbidity in PD patients was significantly higher than in the control group. The average pain during last 24 h measured by the BPI was 2.67. About 76% of PD patients were found to have one pain type, 21.7% were having two pain types, and 1.9% had three pain types. Further, 69.8% of these patients were presented with musculoskeletal pain, 4.7% with dystonic pain, 22.6% with radicular-neuropathic pain, 20.8% with central neuropathic pain, and 9.4% with akathisia pain. The onset age and depression were the most significant predictors of pain in PD patients (p < 0.05). However, there was no significant association between pain and gender, age, disease duration, or severity of the disease. Only 5.7% of PD patients with pain received treatment in this study.
Conclusions:
Pain is frequent and disabling, independent of demographic and clinical variables, and is significantly more common in PD patients.
The high repetition rate 10 J/10 ns Yb:YAG laser system and its key techniques are reported. The amplifiers in this system have a multi-pass V-shape structure and the heat in the amplifiers is removed by means of laminar water flow. In the main amplifier, the laser is four-pass, and an approximately 8.5 J/1 Hz/10 ns output is achieved in the primary test. The far-field of the output beam is approximately 10 times the diffraction limit. Because of the higher levels of amplified spontaneous emission (ASE) in the main amplifier, the output energy is lower than expected. At the end we discuss some measures that can improve the properties of the laser system.
To date, there has been little improvement in cryopreservation of bull sperm due to lack of understanding of the freezing mechanisms. Therefore, this study set out to investigate expression levels of fertility-associated proteins in bull sperm, and in particular the relationship between the 90 kDa heat-shock protein (HSP90) and the sperm characteristics after freezing–thawing. Semen was collected from eight Holstein bulls by artificial vagina. Characteristics of these fresh semen, including sperm motility, morphology, viability and concentration, were evaluated. Sperm quality was also assessed after freezing–thawing. Eight ejaculates were divided into two groups based on freezing resistance and sperm motility. Sperm proteins were extracted and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis and western blotting were performed. SDS-PAGE results showed that there was substantial diversity in 90 kDa proteins in the frozen–thawed sperm and HSP90 was confirmed as one of the 90 kDa proteins by western blot. This study indicated that HSP90 expression correlated positively with sperm quality. The amount of expressed 90 kDa proteins in the high freezing resistance (HFR) group was significantly higher than that in the low freezing resistance (LFR) group (P < 0.05). Thus, higher expression of HSP90 could probably lead to the higher motility and freezing resistance of sperm found after freezing–thawing. Therefore, we concluded that level of HSP90 expression could be used to predict reliably and simply the freezing resistance of bull sperm.
Recently, tremendous progress has been made toward the application of organic light-emitting diodes (OLEDs) in full color flat panel displays and other devices. This article reviews and discusses our recent progress in extended development of emissive semi-interpenetrating polymer networks (E-semi-IPNs) and hybrid quantum dots (QDs)–polymer nanocomposites for use in multicolor and multilayer OLED pixels through low-cost solution processing. Our semi-IPNs with high solvent resistance, containing an inert polymer network and conjugated polymers, served in different layers of OLED devices. These semi-IPNs do not require complicated chemical modification to OLED materials; therefore, many state-of-the-arts conjugated polymers can be utilized to achieve red–green–blue and white OLEDs by tuning formulations. Our research findings on hybrid QD–oligomer nanocomposites lead to the successful design and synthesis of QD–polymer hybrid nanocomposites, which were used to build proof-of-the-concept devices showing good promise in providing excellent color purity and stability from QDs and solution processability from hybrid nanocomposites.
Ultracapacitors are promising candidate for alternative energy storage applications since they can store and deliver energy at relatively high rates. In this work, we integrated large area CVD graphene with multi-walled carbon nanotubes (MWNTs) to fabricate highly conductive, large surface-area composite thin films used as electrodes in ultracapacitors. Uniform, large area graphene layers were produced by CVD on copper foils and were chemically modified. Chemically shortened MWNTs, ranging in length of 200~500 nm, were deposited by dropping on graphene layers. Graphene/MWNT composite films with different thicknesses were obtained. The surface morphology was investigated by SEM. The results demonstrated relatively dense and homogeneous net nanostructure. The measurements of cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy (EIS) are conducted to determine its performance of graphene/MWNT film structures.
Recently, tremendous progress has been made toward application of organic (small molecule/polymer) light-emitting diodes (OLEDs) in full color flat panel displays and other devices. However, with current technologies, OLEDs are still struggling with high manufacturing costs which really limit the size of OLEDs panels and with life time, especially differential aging of colors. To be more cost-effective for fabricating OLEDs, we believe solution-processing would be an attractive path due to its simplicity and highly reduced equipment costs. This proceeding paper discusses our recent progress in development of new polymer systems that are highly solvent-resistant but maintaining their photophysical properties and hybrid quantum-dots (QDs)-polymer nanocomposites for their use in multicolor and multilayer OLEDs pixels through solution-processing. Our new polymer systems are named conductive semi-interpenetrating polymer networks (C-Semi-IPNs) served in different layers of OLEDs devices, containing an inert polymer network and conducting polymer(s) including hole transport and emissive materials. Since these do not require complicated chemical modification or introduction of reactive moieties to OLED materials, many state-of-the-arts emissive polymers can be utilized to achieve RGB and white OLEDs. The research findings on hybrid QDoligomer nanocomposite as a good analogue lead to the successful design and synthesis of QDpolymer nanocomposites which were used to build proof-of-the-concept devices showing a good promise in providing excellent color purity and stability as well as device robustness.
This work describes the fabrication of highly sensitive graphene-based field effect transistor (FET) biosensors in a cost-effective way and its application in label-free DNA detection. CVD graphene was used to achieve mass production of FET device through photolithography method. Non-covalent functionalization of graphene with 1-Pyrenebutanoic acid succinimidyl ester ensures the high conductivity and sensitivity of the device. The present device could reach the low detection limit as low as 3*10-9 M.
Seven isoenergetic semi-purified test diets containing graded levels of protein ranging from 20 to 50% were formulated using fish meal and casein as the protein sources. Test diets were fed to triplicate groups of Barbodes caldwelli juveniles with initial body weights of 1.26±0.02 g for eight weeks. The results indicated no significant effect of dietary protein levels on survival rate, relative weight of the viscera and relative weight of the liver in the juvenile fish. The weight gain and specific growth rate of the fish were found to be greater as dietary protein levels increased from 20 to 35%, but were not affected significantly as dietary protein level increased from 35 to 50%. Feed efficiencies did not differ significantly when fish were fed diets with protein levels from 30 to 50%, but were significantly higher than those of fish fed diets with protein levels of 20 and 25%. The protein efficiency ratio (PER) was negatively correlated with diet protein level (x) (PER=3.006−0.03251x, R=0.9366). There was no significant effect of dietary protein levels on carcass moisture, crude protein and ash. However, carcass lipid levels (L) decreased with an increase in dietary protein level (x) (L=8.2169−0.0458x, R=0.8551). There was no significant variation in hepatopancreas protease activity among the tests. Intestine protease activity and hepatopancreas amylase activity were increased to some extent, and then decreased as dietary protein levels continued to rise. The intestine amylase activity (IAA) of the juveniles was negatively correlated with dietary protein level (x) (IAA=84.625−0.9147x, R=0.8463). It was estimated that the suitable protein level for the B. caldwelli juvenile is 34% (the broken-line model was used to regress the relationship of the weight gain of the juvenile and dietary protein level).
The expression of the YUCAA1 gene and the amount of endogenous indole acetic acid (IAA) in rice (Oryza sativa subsp. japonica) plants and rice suspension cells infected by Rice stripe virus (RSV) were investigated by real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and high-performance liquid chromatography, respectively. The results showed that the expression of the YUCAA1 gene and the amount of endogenous IAA increased at various times (16, 32, 48 and 64 h) after infection of rice suspension cells by RSV. In rice plants infected with RSV, the expression of the YUCAA1 gene and the amount of endogenous IAA increased, in comparison with healthy rice plants, at 4–8 days after infection, and decreased at 12 and 16 days. These results indicated that RSV infection could regulate auxin biosynthesis in rice. Additionally, the expression of the RSV gene CP increased 2.9 times in rice plants after they were treated with a KPSC buffer to deplete the endogenous auxins, and decreased 45% after treatment with 30 μmol/l IAA. All of these results suggest that auxin may play a role in RSV replication in rice plants.
The testosterone-inducible regulator (teiR) gene was cloned from Comamonas testosteroni chromosomal DNA, and introduced into plasmids pKtac2 (containing a tac promoter) and pK18 to yield plasmids pKtac2-teiR and pKteiR100. The recombinant plasmids were transformed into competent Escherichia coli HB101 and total protein was extracted to detect the TeiR protein expression level using enzyme-linked immunosorbent assay (ELISA). E. coli transformed by pKtac2-teiR and pKteiR100 produced 6.65 and 5.93 μg/mg of TeiR protein, respectively. Recombinant plasmids were also co-transformed into competent E. coli HB101 with plasmid p6 [containing hsdA gene (3α-HSD/CR, 3α-hydroxysteroid dehydrogenase/carbonyl reductase encoding gene)] to reveal the relationship between 3α-HSD/CR and TeiR by ELISA. The amounts of TeiR protein expressed by E. coli containing pKtac2-teiR and pKteiR100 were 5.94 μg/mg and 5.33 μg/mg, respectively, and these increased up to 6.81 μg/mg and 6.10 μg/mg after inducing with 1 mmol/l isopropyl-β-d-thiogalactoside (IPTG). Interestingly, 3α-HSD/CR protein expression level, after co-transformation with plasmids pKtac2-teiR and p6, was lower than that observed in the co-transformation with pKteiR100 and p6. The first co-transformation induced 1.20 μg/mg 3α-HSD/CR protein and the second 1.71 μg/mg. These values rose to 1.42 and 1.80 μg/mg, respectively, after treatment with 1 mmol/l IPTG. Our results proved that the tac promoter was more efficient than the lacZ promoter and that the teiR gene could act as an activator for hsdA gene expression.
This study reviews the results of the surgical management of 154 cases of ruptured aneurysm of the sinus of Valsalva. Of the patients0 73% were male, with an average age of 28 years. An associated ventricular septal defect was found in 40% and 23% had aortic valvar regurgitation. The aneurysms originated from the right coronary sinus in 79% and from the non-coronary sinus in the remainders. The aneurysms ruptured into the right ventricle in 73%, into the right atrium in 27% and into the left ventricle in less than 1%. Operative mortality was 4.5%. Long-term follow-up was achieved in 80% of patients, with a mean duration of 5.7 years and a range from two months to 29 years. Preoperative aortic regurgitation and preoperative functional class (NYHA III or IV) were both predictive of a worse long-term outcome. The optimal surgical approach was closure of the distal end of the fistula by direct suture together with reinforcement of the aortic sinus with a Dacron patch.
Total body fat mass (TBFM) and total body lean mass (TBLM) are the major components of the human body. Although these highly correlated phenotypic traits are frequently used to characterize obesity, the specific shared genetic factors that influence both traits remain largely unknown. Our study was aimed at identifying common quantitative trait loci (QTLs) contributing to both TBFM and TBLM. We performed a whole genome-linkage scan study in a large sample of 3255 subjects from 420 Caucasian pedigrees. Bivariate linkage analysis was carried out in both the entire sample and gender-specific subsamples. Several potentially important genomic regions that may harbour QTLs important for TBFM and TBLM were identified. For example, 20p12-11 achieved a LOD score of 2·04 in the entire sample and, in the male subsample, two genomic regions, 20p12 (LOD=2·08) and 3p26-25 (LOD=1·92), showed suggestive linkage. In addition, two-point linkage analyses for chromosome X showed suggestive linkages on Xp22 in the entire sample (LOD=2·14) and significant linkage on Xp22 in the female subsample (LOD=3·05). Complete pleiotropy was suggested for 20p12 and 3p26-25 in males. Our results suggest that QTLs on chromosomes 20p12, 3p26-25 and Xp22 may jointly influence TBFM and TBLM. Further fine mapping and gene identification studies for these pleiotropic effects are needed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.