We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper provides an overview of the current status of ultrafast and ultra-intense lasers with peak powers exceeding 100 TW and examines the research activities in high-energy-density physics within China. Currently, 10 high-intensity lasers with powers over 100 TW are operational, and about 10 additional lasers are being constructed at various institutes and universities. These facilities operate either independently or are combined with one another, thereby offering substantial support for both Chinese and international research and development efforts in high-energy-density physics.
Immunological castration can be an alternative to traditional surgical castration. The active immunization against GnRH or kisspeptin has a castrating effect. To date, the fusion protein vaccine of combination with GnRH and kisspeptin have not been studied. Thus, the present study will develop a GnRH6-kisspeptin vaccine by genetic engineering method and investigate its immunocastration effect in male rats. Twenty 20-day-old male rats were randomly divided into two groups: the control group (n=10) and the immunization group (n=10). The initial immunization took place at week 0 followed by three booster doses administered intervals. The control group received an equivalent dose of white oil adjuvant. Orbital blood samples were collected at various time points following the initial immunization, at 0, 2, 4, 6, 8, 10 and 12 weeks, respectively. The entire left testis was weighed and its volume measured at week 12. Samples from the right testis were obtained for histological analysis. Serum levels of GnRH and kisspeptin antibodies, as well as testosterone levels were determined using ELISA. The results showed that the serum levels of GnRH and kisspeptin antibody titres of the immunized rats were significantly higher compared to the control group (P<0.05). Additionally, the testosterone concentration was effectively reduced following the intensified immunization. The testes of the immunized group exhibited a reduction in size and a significant decrease in the number of spermatogonia in the testicular tissue compared to the control group (P<0.05). These data indicate that the recombinant GnRH6-kisspeptin protein effectively induced immunological castration in rats.
Systematically monitoring the baseline sensitivity of troublesome weeds to herbicides is a crucial step in the early detection of their market lifespan. Florpyrauxifen-benzyl is one of the most important herbicides used in rice production throughout the world, and has been used for 5 yr in China. Barnyardgrass is one of the main targeted weed species of florpyrauxifen-benzyl. In total, 114 barnyardgrass populations were collected from rice fields in Jiangsu Province, China, and using whole-plant bioassays they were screened for susceptibility to florpyrauxifen-benzyl. The GR50 values (representing the dose that causes a 50% reduction in fresh weight of aboveground parts) of florpyrauxifen-benzyl for all populations ranged from 1.0 to 34.5 g ai ha−1, with an average of 6.8 g ai ha−1, a baseline sensitivity dose of 3.3 g ai ha−1, and a baseline sensitivity index of 34.5. Twenty-one days after treatment with florpyrauxifen-benzyl at the labeled dose (36 g ai ha−1), 90% of the barnyardgrass populations exhibited >95% reductions in fresh weight of aboveground parts. Compared with the baseline sensitivity dose, 63, 44, and 7 populations had, respectively, no resistance (55%), low resistance (39%), and moderate resistance (6%) to florpyrauxifen-benzyl. Furthermore, the GR50 distribution of barnyardgrass populations did not show a significant correlation with collection location, planting method (direct-seeding or transplanting), or rice species (Oryza sativa L. ssp. indica or ssp. japonica) at any of rice fields where seeds had been collected (P > 0.05). In conclusion, florpyrauxifen-benzyl remains effective for barnyardgrass control in rice fields despite serious resistance challenges.
Previous research has shown abnormal functional network gradients in Alzheimer’s disease (AD). Structural network gradient is capable of capturing continuous changes in brain morphology and has the ability to elucidate the underlying processes of neurodevelopment. However, it remains unclear whether structural network gradients are altered in AD and what associations exist between these changes and cognitive function, and gene expression profiles.
Methods
By constructing an individualized structural network gradient decomposition framework, we calculated the morphological similarity network (MSN) gradients for 404 subjects (186 AD patients and 218 normal controls). We investigated AD-related alterations in MSN gradients, along with the associations between MSN gradients and cognitive function, MSN topological properties, and gene expression profiles.
Results
Our findings indicated that the principal MSN gradient alterations in AD were primarily characterized by an increase in the primary and secondary sensory cortices and a decrease in the association cortex 1. The primary and higher-order cortices exhibited opposite associations with cognition, including executive function, language skills, and memory processes. Moreover, the principal MSN gradients were found to significantly predict cognitive function in AD. The altered gradient pattern was 14.8% attributable to gene expression profiles, and the genes demonstrating the highest correlation are involved in metabolic activity and synaptic signaling.
Conclusions
Our results offered novel insights into the underlying mechanisms of structural brain network impairment in AD patients, enhancing our understanding of the neurobiological processes responsible for impaired cognition in patients with AD, and offering a new dimensional structural biomarker for AD.
The multi-robot path planning problem is an NP-hard problem. The coati optimization algorithm (COA) is a novel metaheuristic algorithm and has been successfully applied in many fields. To solve multi-robot path planning optimization problems, we embed two differential evolution (DE) strategies into COA, a self-adaptive differential evolution-based coati optimization algorithm (SDECOA) is proposed. Among these strategies, the proposed algorithm adaptively selects more suitable strategies for different problems, effectively balancing global and local search capabilities. To validate the algorithm’s effectiveness, we tested it on CEC2020 benchmark functions and 48 CEC2020 real-world constrained optimization problems. In the latter’s experiments, the algorithm proposed in this paper achieved the best overall results compared to the top five algorithms that won in the CEC2020 competition. Finally, we applied SDECOA to optimization multi-robot online path planning problem. Facing extreme environments with multiple static and dynamic obstacles of varying sizes, the SDECOA algorithm consistently outperformed some classical and state-of-the-art algorithms. Compared to DE and COA, the proposed algorithm achieved an average improvement of 46% and 50%, respectively. Through extensive experimental testing, it was confirmed that our proposed algorithm is highly competitive. The source code of the algorithm is accessible at: https://ww2.mathworks.cn/matlabcentral/fileexchange/164876-HDECOA.
Access to information via social media is one of the biggest differentiators of public health crises today. During the early stages of the Covid-19 outbreak in January 2020, we conducted an experiment in Wuhan, China to assess the impact of viral social media content on pro-social and trust behaviours and preferences towards risk taking with known and unknown probabilities. Prior to the experiment, participants viewed one of two videos that had been widely and anonymously shared on Chinese social media: a central government leader visiting a local hospital and supermarket, or health care volunteers transiting to Wuhan. In a control condition, participants watched a Neutral video, unrelated to the crisis. Viewing one of the leadership or volunteer videos leads to higher levels of pro-sociality and lesser willingness to take risks in an ambiguous situation relative to the control condition. The leadership video, however, induces lower levels of trust. We provide evidence from two post-experiment surveys that the video’s impact on pro-sociality is modulated by influencing the viewer’s affective emotional state.
Developing large-eddy simulation (LES) wall models for separated flows is challenging. We propose to leverage the significance of separated flow data, for which existing theories are not applicable, and the existing knowledge of wall-bounded flows (such as the law of the wall) along with embedded learning to address this issue. The proposed so-called features-embedded-learning (FEL) wall model comprises two submodels: one for predicting the wall shear stress and another for calculating the eddy viscosity at the first off-wall grid nodes. We train the former using the wall-resolved LES (WRLES) data of the periodic hill flow and the law of the wall. For the latter, we propose a modified mixing length model, with the model coefficient trained using the ensemble Kalman method. The proposed FEL model is assessed using the separated flows with different flow configurations, grid resolutions and Reynolds numbers. Overall good a posteriori performance is observed for predicting the statistics of the recirculation bubble, wall stresses and turbulence characteristics. The statistics of the modelled subgrid-scale (SGS) stresses at the first off-wall grids are compared with those calculated using the WRLES data. The comparison shows that the amplitude and distribution of the SGS stresses and energy transfer obtained using the proposed model agree better with the reference data when compared with the conventional SGS model.
Depression is one of the major mental disorders, which seriously endangers human health, brings a serious burden to patients’ families. In this study, we intended to further explore the antidepressant-like effect and possible molecular mechanisms of Salidroside (SAL). We built corticosterone (CORT)-induced depressive mice model and used behavioural tests to evaluate depression behaviour. To explore the molecular mechanisms of SAL, we employed a variety of methods such as immunofluorescence, western blot, pharmacological interference, etc. The results demonstrated that SAL both at 25 mg/kg and 50 mg/kg can reduce immobility time in the tail suspension test (TST). At the same time, SAL treatment could restore the reduced sugar water intake preference in the sucrose preference test (SPT) in CORT-induced depressive mice and reduce the immobility time in TST and forced swimming experiments (FST). In addition, SAL treatment reversed the reduction in the number of Ki-67, BrdU, and NeuN in the hippocampus due to CORT treatment. SAL treatment also restored the expression of SIRT1, PGC-1α, brain-derived neurotrophic factor (BDNF) and other proteins in the hippocampus. In addition, after blocking SIRT1 signalling with EX527, we found that the treatment with SAL failed to reduce the immobility time in TST and FST, the level of SIRT1 and PGC-1α activity were correspondingly downregulated, and the expression of DCX and Ki-67 in the hippocampus failed to be activated. These findings suggested that SAL exerts antidepressant-like effects by promoting hippocampal neurogenesis through the SIRT1/PGC-1α signalling pathway.
MicroRNAs (miRNAs) are endogenous, non-coding RNAs, which are functional in a variety of biological processes through post-transcriptional regulation of gene expression. However, the role of miRNAs in the interaction between Bacillus thuringiensis and insects remains unclear. In this study, small RNA libraries were constructed for B. thuringiensis-infected (Bt) and uninfected (CK) Spodoptera exigua larvae (treated with double-distilled water) using Illumina sequencing. Utilising the miRDeep2 and Randfold, a total of 233 known and 726 novel miRNAs were identified, among which 16 up-regulated and 34 down-regulated differentially expressed (DE) miRNAs were identified compared to the CK. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that potential target genes of DE miRNAs were associated with ABC transporters, fatty acid metabolism and MAPK signalling pathway which are related to the development, reproduction and immunity. Moreover, two miRNA core genes, SeDicer1 and SeAgo1 were identified. The phylogenetic tree showed that lepidopteran Dicer1 clustered into one branch, with SeDicer1 in the position closest to Spodoptera litura Dicer1. A similar phylogenetic relationship was observed in the Ago1 protein. Expression of SeDicer1 increased at 72 h post infection (hpi) with B. thuringiensis; however, expression of SeDicer1 and SeAgo1 decreased at 96 hpi. The RNAi results showed that the knockdown of SeDicer1 directly caused the down-regulation of miRNAs and promoted the mortality of S. exigua infected by B. thuringiensis GS57. In conclusion, our study is crucial to understand the relationship between miRNAs and various biological processes caused by B. thuringiensis infection, and develop an integrated pest management strategy for S. exigua via miRNAs.
Microstates of an electroencephalogram (EEG) are canonical voltage topographies that remain quasi-stable for 90 ms, serving as the foundational elements of brain dynamics. Different changes in EEG microstates can be observed in psychiatric disorders like schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD). However, the similarities and disparatenesses in whole-brain dynamics on a subsecond timescale among individuals diagnosed with SCZ, BD, and MDD are unclear.
Methods
This study included 1112 participants (380 individuals diagnosed with SCZ, 330 with BD, 212 with MDD, and 190 demographically matched healthy controls [HCs]). We assembled resting-state EEG data and completed a microstate analysis of all participants using a cross-sectional design.
Results
Our research indicates that SCZ, BD, and MDD exhibit distinct patterns of transition among the four EEG microstate states (A, B, C, and D). The analysis of transition probabilities showed a higher frequency of switching from microstates A to B and from B to A in each patient group compared to the HC group, and less frequent transitions from microstates A to C and from C to A in the SCZ and MDD groups compared to the HC group. And the probability of the microstate switching from C to D and D to C in the SCZ group significantly increased compared to those in the patient and HC groups.
Conclusions
Our findings provide crucial insights into the abnormalities involved in distributing neural assets and enabling proper transitions between different microstates in patients with major psychiatric disorders.
Accurately assessing the self-efficacy levels of palliative care professionals’ is crucial, as low levels of self-efficacy may contribute to the suboptimal provision of palliative care. However, there is currently lacking a reliable and valid instrument for evaluating the self-efficacy of palliative care practitioners in China. Therefore, this study aimed to translate, adapt, and validate the Palliative Care Self-Efficacy Scale (PCSS) among Chinese palliative care professionals.
Methods
This study involved the translation and cross-cultural adaptation of the PCSS, and the evaluation of its psychometric properties through testing for homogeneity, content validity, construct validity, known-groups validity, and reliability.
Results
A total of 493 palliative care professionals participated in this study. The results showed the critical ratio value of each item was >3 (p < 0.01), and the corrected item-total correlation coefficients of all items ranged from 0.733 to 0.818, indicating a good homogeneity of the items with the scale. Additionally, the scale was shown to have good validity, with item-level content validity index ranged from 0.857 to 1.000, and scale-level content validity index/Ave was 0.956. The exploratory factor analysis and confirmatory factor analysis (CFA) confirmed the 2-factor structure of the Chinese version of PCSS (C-PCSS), explaining 74.19% of the variance. CFA verified that the 2-factor model had a satisfactory model fit, with χ2/df = 2.724, RMSEA = 0.084, GFI = 0.916, CFI = 0.967, and TLI = 0.952. The known-groups validity of C-PCSS was demonstrated good with its sensitive in differentiating levels of self-efficacy between professionals with less than 1 year of palliative care experience (p < 0.001) or without palliative care training (p = 0.014) and their counterparts. Furthermore, the C-PCSS also exhibited an excellent internal consistency, with the Cronbach’s α for the total scale of 0.943.
Significance of results
The findings from this study affirmed good validity and reliability of the C-PCSS. It can be emerged as a valuable and reliable instrument for assessing the self-efficacy levels of palliative care professionals in China.
Mosquito-borne diseases have emerged in North Borneo in Malaysia due to rapid changes in the forest landscape, and mosquito surveillance is key to understanding disease transmission. However, surveillance programmes involving sampling and taxonomic identification require well-trained personnel, are time-consuming and labour-intensive. In this study, we aim to use a deep leaning model (DL) to develop an application capable of automatically detecting mosquito vectors collected from urban and suburban areas in North Borneo, Malaysia. Specifically, a DL model called MobileNetV2 was developed using a total of 4880 images of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus mosquitoes, which are widely distributed in Malaysia. More importantly, the model was deployed as an application that can be used in the field. The model was fine-tuned with hyperparameters of learning rate 0.0001, 0.0005, 0.001, 0.01 and the performance of the model was tested for accuracy, precision, recall and F1 score. Inference time was also considered during development to assess the feasibility of the model as an app in the real world. The model showed an accuracy of at least 97%, a precision of 96% and a recall of 97% on the test set. When used as an app in the field to detect mosquitoes with the elements of different background environments, the model was able to achieve an accuracy of 76% with an inference time of 47.33 ms. Our result demonstrates the practicality of computer vision and DL in the real world of vector and pest surveillance programmes. In the future, more image data and robust DL architecture can be explored to improve the prediction result.
Although dopaminergic disturbances are well-known in schizophrenia, the understanding of dopamine-related brain dynamics remains limited. This study investigates the dynamic coactivation patterns (CAPs) associated with the substantia nigra (SN), a key dopaminergic nucleus, in first-episode treatment-naïve patients with schizophrenia (FES).
Methods
Resting-state fMRI data were collected from 84 FES and 94 healthy controls (HCs). Frame-wise clustering was implemented to generate CAPs related to SN activation or deactivation. Connectome features of each CAP were derived using an edge-centric method. The occurrence for each CAP and the balance ratio for antagonistic CAPs were calculated and compared between two groups, and correlations between temporal dynamic metrics and symptom burdens were explored.
Results
Functional reconfigurations in CAPs exhibited significant differences between the activation and deactivation states of SN. During SN activation, FES more frequently recruited a CAP characterized by activated default network, language network, control network, and the caudate, compared to HCs (F = 8.54, FDR-p = 0.030). Moreover, FES displayed a tilted balance towards a CAP featuring SN-coactivation with the control network, caudate, and thalamus, as opposed to its antagonistic CAP (F = 7.48, FDR-p = 0.030). During SN deactivation, FES exhibited increased recruitment of a CAP with activated visual and dorsal attention networks but decreased recruitment of its opposing CAP (F = 6.58, FDR-p = 0.034).
Conclusion
Our results suggest that neuroregulatory dysfunction in dopaminergic pathways involving SN potentially mediates aberrant time-varying functional reorganizations in schizophrenia. This finding enriches the dopamine hypothesis of schizophrenia from the perspective of brain dynamics.
Heavy-duty hexapod robots are well-suited for physical transportation, disaster relief, and resource exploration. The immense locomotion capabilities conferred by the six appendages of these systems enable traversal over unstructured and challenging terrain. However, tipping can be a serious concern when moving with a tripod gait in these challenging environments, which may cause irreversible consequences such as compromised movement control and potential damage. In this paper, we focus on heavy-duty hexapod robot sideline tipping judgment and recovery during tripod gait motion, and a novel sideline tipping judgment and recovery method is proposed by adjusting an optimal swinging leg to the stance state. Considering the locomotion environments, motion mode, and tipping analysis, the robot’s stability margin is quantified, and the tipping event is evaluated by the Force Angle Stability Measure (FASM). The recovery method is initiated upon detecting that the robot is tipping, which involves the selection of an adjustment leg and the determination of an optimal foothold. Since the FASM is based on the foot force and robot center of gravity (CoG), the stability margin quantification expression is reformulated to the constraint form of quadratic programming (QP). Furthermore, a foot force distribution method, integrating stability margin considerations into the QP model, has been devised to ensure post-adjustment stability of the landing leg. Experiments on tipping judgment and recovery demonstrate the effectiveness of the proposed approaches on tipping judgment and recovery.
The laser-driven flyer plate is an important loading technology in high energy physics, shock wave physics, and explosive initiation application. How to generate a high-velocity and intact flyer plate by using the laser is a matter of concern for laser driving. In this study, the multilayer flyer plates (MFPs) of Al/Al2O3/Al and TiO2/Al/Al2O3/Al with adjustable performance were designed and fabricated by magnetron sputtering and analyzed by scanning electron microscopy (SEM), laser reflectance spectrometer, and differential thermal analysis (DTA). The effects of the structure and material on the output performance of MFPs were analyzed by photon Doppler velocimetry (PDV) and ultrahigh-speed video. The morphology results showed that the structure of MFPs had uniform and clear boundaries between side-by-side layers. The MFP velocity was controlled in the range of 4.0–6.0 km/s by adjusting the film thickness, structure, and thermite material with 43.1 J/cm2 laser ablation. Among them, the energetic flyers with the thermite ablation layer had the highest final velocity of 5.38 km/s due to the prestored energy of TiO2/Al. By appropriately increasing the thickness of Al2O3 from 0.4 μm to 0.8 μm, the complete flight of the flyer plate to 3.72 mm can be realized. In addition, TiO2/Al thermite film had characteristics of reaction heat release and lower laser reflectivity (72.13%) than the Al layer (80.55%), which explained the velocity enhancement effect of energetic flyer plates. This work provides facile strategy to enhance the output performance of MFPs, which may facilitate the practical applications of laser driving technology.
Convergent evidence has suggested atypical relationships between brain structure and function in major psychiatric disorders, yet how the abnormal patterns coincide and/or differ across different disorders remains largely unknown. Here, we aim to investigate the common and/or unique dynamic structure–function coupling patterns across major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ).
Methods
We quantified the dynamic structure–function coupling in 452 patients with psychiatric disorders (MDD/BD/SZ = 166/168/118) and 205 unaffected controls at three distinct brain network levels, such as global, meso-, and local levels. We also correlated dynamic structure–function coupling with the topological features of functional networks to examine how the structure–function relationship facilitates brain information communication over time.
Results
The dynamic structure–function coupling is preserved for the three disorders at the global network level. Similar abnormalities in the rich-club organization are found in two distinct functional configuration states at the meso-level and are associated with the disease severity of MDD, BD, and SZ. At the local level, shared and unique alterations are observed in the brain regions involving the visual, cognitive control, and default mode networks. In addition, the relationships between structure–function coupling and the topological features of functional networks are altered in a manner indicative of state specificity.
Conclusions
These findings suggest both transdiagnostic and illness-specific alterations in the dynamic structure–function relationship of large-scale brain networks across MDD, BD, and SZ, providing new insights and potential biomarkers into the neurodevelopmental basis underlying the behavioral and cognitive deficits observed in these disorders.
Product graphics interchange formats (GIFs) employ this format to show the features of the product and make up for the lack of physical experience online. These GIFs have been widely applied in domains such as e-shopping and social media, aiming to interest and impress viewers. Contrary to this wide application, most designers in this domain lack expertise and produce GIFs of varied quality. Moreover, the knowledge of techniques to enhance viewers’ engagement with product GIFs is also lacking. To bridge the gap, we conducted a series of studies. First, we collected and summarized seven design factors referring to existing literature and semi-structured interviews. Then, the impacts of these design factors were revealed through an online study with 106 product GIFs among 307 participants. The results showed that visual-related factors such as color contrast and moving intensity mainly impact viewers’ interest, while content-related factors such as scenario and style matching impact viewers’ impressions. The simplicity of GIFs also impressed viewers with a quick viewing mode. Finally, we conducted a workshop and verified that these results support large-scale production of product GIFs. Our studies might support the codesign methods of product GIFs and enhance their quality in design practice.
Fast neutron absorption spectroscopy is widely used in the study of nuclear structure and element analysis. However, due to the traditional neutron source pulse duration being of the order of nanoseconds, it is difficult to obtain a high-resolution absorption spectrum. Thus, we present a method of ultrahigh energy-resolution absorption spectroscopy via a high repetition rate, picosecond duration pulsed neutron source driven by a terawatt laser. The technology of single neutron count is used, which results in easily distinguishing the width of approximately 20 keV at 2 MeV and an asymmetric shape of the neutron absorption peak. The absorption spectroscopy based on a laser neutron source has one order of magnitude higher energy-resolution power than the state-of-the-art traditional neutron sources, which could be of benefit for precisely measuring nuclear structure data.
In this paper, we design and fabricate dual-tunable waveguides in a two-dimensional periodic plate with threaded holes. Dual tunability is realized by using rods held with nuts as well as assembly prestress of the nuts. A straight waveguide, a bent waveguide, and a wave splitter are designed by changing the distribution of rods and nuts in different circuits. The experimental and numerical results show that the frequencies of guided waves can be tuned by the assembly prestress. By increasing the amount of prestress, the frequency range of the passing band can be shifted upward. Confinements, guiding, and splitting of Lamb waves are clearly observed in both experimental measurements and numerical simulations. This work is essential for the practical design of reconfigurable phononic devices.