We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Microinstabilities drive turbulent fluctuations in inhomogeneous, magnetised plasmas. In the context of magnetic confinement fusion devices, this leads to an enhanced transport of particles, momentum and energy, thereby degrading confinement. In this work, we describe an application of the adjoint method to efficiently determine variations of gyrokinetic linear growth rates on a general set of external parameters in the local $\delta f$-gyrokinetic model. We then offer numerical verification of this approach. When coupled with gradient-based techniques, this methodology can facilitate the optimisation process for the microstability of the confined plasmas across a high-dimensional parameter space. We present a numerical demonstration wherein the ion-temperature-gradient instability growth rate in a tokamak plasma is minimised with respect to flux surface shaping parameters. The adjoint method approach demonstrates a significant computational speed-up compared with a finite-difference gradient calculation.
Well-crystallized laumontite has been found for the first time precipitating naturally at the earth's surface at temperatures of 89° to 43°C as a component of gray to white coatings and efflorescences on exterior surface and as precipitates on interior fractures of stones and blocks lining Hot Springs Creek immediately downstream from Sespe Hot Springs, Ventura County, California. X-ray powder diffraction, scanning electron microscope (SEM), and electron microprobe analyses show thenardite to be the dominant phase in the exterior coatings, in association with minor microcrystalline (<50 μm) laumontite and gypsum. Macrocrystalline (>1 mm) laumontite is the dominant phase in interior fracture coatings and is associated with quartz, potassium feldspar, and gypsum. Trace amounts of smectite(?), halite, a mercury sulfide, an iron sulfide, an iron-bearing mineral (possibly an oxide or carbonate), and a copper mineral are also present. Zeolites other than laumontite have not been seen, and carbonate minerals are either entirely or nearly absent. SEM textures indicate nonreactive intergrowths of laumontite, quartz, potassium feldspar, and gypsum. Unbroken laumontite crystals are generally euhedral or have skeletal growth characteristics and exhibit sharp, fresh, non-corroded faces, edges, and corners.
The water issuing from the hottest and largest spring is 89°C, has a pH of 7.74, 1200 mg/liter total dissolved solids, and contains Na+, Cl−, SO42-, and H4SiO4 as the dominant dissolved species. Computations indicate that the water is supersaturated with respect to laumontite, quartz, chlorite, and prehnite and is slightly undersaturated with respect to calcite and noncrystalline silica. Water-dominated water-rock interaction is indicated by isotopic analyses. The δO18 composition expectable on the basis of the −81‰ δD composition is −11.38‰ instead of the −9.5‰ actually found (all referred to SMOW). The water chemistry suggests that the subsurface water source may have a temperature of 125°–135°C. This temperature range, together with the regionally low geothermal gradient, implies that the source is probably 3550 to 3900 m beneath the springs in fractured and permeable Mesozoic and older plutonites and gneisses.
The discovery of laumontite crystallizing at atmospheric pressure and 43°C (or lower) provides important insight into the processes responsible for burial diagenetic laumontite and a valuable perspective on the zeolite metamorphic facies.
We report the discovery of a bow-shock pulsar wind nebula (PWN), named Potoroo, and the detection of a young pulsar J1638$-$4713 that powers the nebula. We present a radio continuum study of the PWN based on 20-cm observations obtained from the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. PSR J1638$-$4713 was identified using Parkes radio telescope observations at frequencies above 3 GHz. The pulsar has the second-highest dispersion measure of all known radio pulsars (1 553 pc cm$^{-3}$), a spin period of 65.74 ms and a spin-down luminosity of $\dot{E}=6.1\times10^{36}$ erg s$^{-1}$. The PWN has a cometary morphology and one of the greatest projected lengths among all the observed pulsar radio tails, measuring over 21 pc for an assumed distance of 10 kpc. The remarkably long tail and atypically steep radio spectral index are attributed to the interplay of a supernova reverse shock and the PWN. The originating supernova remnant is not known so far. We estimated the pulsar kick velocity to be in the range of 1 000–2 000 km s$^{-1}$ for ages between 23 and 10 kyr. The X-ray counterpart found in Chandra data, CXOU J163802.6$-$471358, shows the same tail morphology as the radio source but is shorter by a factor of 10. The peak of the X-ray emission is offset from the peak of the radio total intensity (Stokes $\rm I$) emission by approximately 4.7$^{\prime\prime}$, but coincides well with circularly polarised (Stokes $\rm V$) emission. No infrared counterpart was found.
The year 2020 was an awakening for some. For others, it reiterated the persistent social injustice in the United States. Compelled by these events, 30 diverse individuals came together from January to May 2021 for a semester-long seminar exploring inequity in archaeological practice. The seminar's discussions spotlighted the inequity and social injustices that are deeply embedded within the discipline. However, inequity in archaeology is often ignored or treated narrowly as discrete, if loosely bound, problems. A broad approach to inequity in archaeology revealed injustice to be intersectional, with compounding effects. Through the overarching themes of individual, community, theory, and practice, we (a subset of the seminar's participants) explore inequity and its role in various facets of archaeology, including North–South relations, publication, resource distribution, class differences, accessibility, inclusive theories, service to nonarchaeological communities, fieldwork, mentorship, and more. We focus on creating a roadmap for understanding the intersectionality of issues of inequity and suggesting avenues for continued education and direct engagement. We argue that community-building—by providing mutual support and building alliances—provides a pathway for realizing greater equity in our discipline.
A supply disruption alert in 2020, now rescinded, notified UK prescribers of the planned discontinuation of Priadel® (lithium carbonate) tablets. This service evaluation explored lithium dose and plasma levels before and after the switching of lithium brands, in order to determine the interchangeability of different brands of lithium from a pharmacokinetic perspective.
Results
Data on the treatment of 37 patients switched from Priadel® tablets were analysed. Switching to Camcolit® controlled-release tablets at the same dose did not result in meaningful differences in plasma lithium levels. Dose adjustment and known or suspected poor medication adherence were associated with greater variability in plasma lithium levels on switching brands.
Clinical implications
For comparable pre- and post-switch doses in adherent patients, the most common brands of lithium carbonate appear to produce similar plasma lithium levels. British National Formulary guidance relating to switching lithium brands may be unnecessarily complex.
The search for life in the Universe is a fundamental problem of astrobiology and modern science. The current progress in the detection of terrestrial-type exoplanets has opened a new avenue in the characterization of exoplanetary atmospheres and in the search for biosignatures of life with the upcoming ground-based and space missions. To specify the conditions favourable for the origin, development and sustainment of life as we know it in other worlds, we need to understand the nature of global (astrospheric), and local (atmospheric and surface) environments of exoplanets in the habitable zones (HZs) around G-K-M dwarf stars including our young Sun. Global environment is formed by propagated disturbances from the planet-hosting stars in the form of stellar flares, coronal mass ejections, energetic particles and winds collectively known as astrospheric space weather. Its characterization will help in understanding how an exoplanetary ecosystem interacts with its host star, as well as in the specification of the physical, chemical and biochemical conditions that can create favourable and/or detrimental conditions for planetary climate and habitability along with evolution of planetary internal dynamics over geological timescales. A key linkage of (astro)physical, chemical and geological processes can only be understood in the framework of interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary and Earth sciences. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets will significantly expand the current definition of the HZ to the biogenic zone and provide new observational strategies for searching for signatures of life. The major goal of this paper is to describe and discuss the current status and recent progress in this interdisciplinary field in light of presentations and discussions during the NASA Nexus for Exoplanetary System Science funded workshop ‘Exoplanetary Space Weather, Climate and Habitability’ and to provide a new roadmap for the future development of the emerging field of exoplanetary science and astrobiology.
Understanding how plants alter their growth in response to interplant competition is an overlooked but complex problem. Previous studies have characterized the effect of light and water stress on soybean or common ragweed growth in monoculture, but no study has characterized soybean and common ragweed growth in mixture. A field study was conducted in 2015 and 2016 at the University of Nebraska-Lincoln to characterize the growth response of soybean and common ragweed with different irrigation levels and intraspecific and interspecific interference. The experiment was arranged in a split-plot design with irrigation level (0, 50%, 100% replacement of simulated evapotranspiration) as the main plot and common ragweed density (0, 2, 6, 12 plants m−1 row) as the subplot. Crop- and weed-free controls and three mixture treatments were included as subplots. Periodic destructive samples of leaf area and biomass of different organ groups were collected, and leaf area index (LAI), aboveground biomass partitioning, specific leaf area (SLA), and leaf area ratio (LAR) were calculated. Additionally, soybean and common ragweed yield were harvested, and 100-seed weight and seed production were determined. Soybean did not alter biomass partitioning, SLA, or LAR in mixture with common ragweed. Soybean LAI, biomass, and seed size were affected by increasing common ragweed density. Conversely, common ragweed partitioned less new biomass to leaves and increased SLA in response to increased interference. Common ragweed LAI, biomass, and seed number were reduced by the presence of soybean and increasing common ragweed density; however, seed weight was not affected. Results show that adjustment in biomass partitioning, SLA, and LAR is not the method that soybean uses to remain plastic under competition for light. Common ragweed demonstrated plasticity in both biomass partitioning and SLA, indicating an ability to maintain productivity under intra- and inter-specific competition for light or soil resources.
Dementia is a neurodegenerative disorder with global impact, with the largest proportion of cases occurring in low- and middle-income countries. It is estimated that there are 46.8 million cases globally with approximately 10 million new cases each year or a new case occurring every 3 sec (Prince et al., 2015). For comparison there are 36.7 million HIV cases with an estimated 2 million new cases each year (WHO, 2017). The rise in dementia prevalence is largely due to population ageing, with the oldest being at highest risk. To date there are no diseases modifying medications for Alzheimer's disease or the other causes of dementia. Academics and research groups are increasingly focused on prevention or delay of dementia (Brayne and Miller, 2017) and a number of organizations now prioritize dementia, indicating a strong and coherent international effort to address this problem. Examples include the World Health Organisation (WHO), which has established a Global Dementia Observatory; the World Dementia Council; the Organisation for Economic Co-operation and Development (OECD); the U.S. National Alzheimer's Project Act (NAPA); and the Global Council on Brain Health.
Spring tillage is a component of an integrated weed management strategy for control of early emerging glyphosate-resistant weeds such as common ragweed; however, the effect of tillage on common ragweed emergence pattern is unknown. The objectives of this study were to evaluate whether spring tillage during emergence would influence the emergence pattern or stimulate additional emergence of common ragweed and to characterize common ragweed emergence in southeast Nebraska. A field experiment was conducted for three years (2014 to 2016) in Gage County, Nebraska in a field naturally infested with glyphosate-resistant common ragweed. Treatments consisted of a no-tillage control and three spring tillage timings. The Soil Temperature and Moisture Model (STM2) software was used to estimate soil temperature and moisture at a 2-cm depth. The Weibull function was fit to total common ragweed emergence (%) with day of year (DOY), thermal time, and hydrothermal time as independent variables. Tillage treatments and year had no effect on total common ragweed emergence (P=0.88 and 0.35, respectively) and time to 10, 25, 50, 75, and 90% emergence (P=0.31). However, emergence pattern was affected by year (P=<0.001) with 50% total emergence reached on May 5 in 2014, April 20 in 2015, and April 2 in 2016 and 90% total emergence reached on May 12, 2014, May 8, 2015, and April 30, 2016. According to the corrected information-theoretic model comparison criterion (AICc), the Weibull function with thermal time and base temperature of 3 C best explained the emergence pattern over three years. This study concludes that spring tillage does not stimulate additional emergence; therefore, after the majority of the common ragweed has emerged and before the crop has been planted, tillage could be used as an effective component of an integrated glyphosate-resistant common ragweed management program in Nebraska.
Annual bluegrass is a problematic weed in bermudagrass and other intensively maintained turfgrasses. Flumioxazin is reported to control annual bluegrass both PRE and POST; however, as a contact herbicide, flumioxazin injures actively growing bermudagrass. Research was conducted in Alabama and California to evaluate optimal flumioxazin application timing for annual bluegrass control, bermudagrass response, and overall sward quality in the field, and to assess annual bluegrass control at various growth stages in the greenhouse. November and December application timings resulted in the best balance of the three parameters. When bermudagrass was not dormant at application, treatment resulted in necrosis of green tissues and thus induced dormancy. The herbicide-induced dormancy resulted in better sward quality due to more uniform and therefore more aesthetically pleasing dormant turfgrass relative to natural dormancy. Flumioxazin at 0.43 kg ai ha−1 resulted in better annual bluegrass control and improved sward quality relative to 0.21 kg ha−1. Incomplete POST annual bluegrass control from later applications was attributed to larger weed size, limiting the effectiveness of this contact herbicide. Greenhouse data corroborated field results and indicated that flumioxazin at 0.43 kg ha−1 controlled ≥ 95% of annual bluegrass up to two tillers. Flumioxazin can be utilized for PRE and POST annual bluegrass control, but utilization of this herbicide is limited to dormant bermudagrass unless induced dormancy can be tolerated, and POST control is limited to annual bluegrass plants ≤ two tillers in size.
Whole apples have not been previously implicated in outbreaks of foodborne bacterial illness. We investigated a nationwide listeriosis outbreak associated with caramel apples. We defined an outbreak-associated case as an infection with one or both of two outbreak strains of Listeria monocytogenes highly related by whole-genome multilocus sequence typing (wgMLST) from 1 October 2014 to 1 February 2015. Single-interviewer open-ended interviews identified the source. Outbreak-associated cases were compared with non-outbreak-associated cases and traceback and environmental investigations were performed. We identified 35 outbreak-associated cases in 12 states; 34 (97%) were hospitalized and seven (20%) died. Outbreak-associated ill persons were more likely to have eaten commercially produced, prepackaged caramel apples (odds ratio 326·7, 95% confidence interval 32·2–3314). Environmental samples from the grower's packing facility and distribution-chain whole apples yielded isolates highly related to outbreak isolates by wgMLST. This outbreak highlights the importance of minimizing produce contamination with L. monocytogenes. Investigators should perform single-interviewer open-ended interviews when a food is not readily identified.
Improving neurocognitive outcomes following treatment for brain metastases have become increasingly important. We propose that a brief telephone-based neurocognitive assessment may improve follow-up cognitive assessments in this palliative population. Aim: To prospectively assess the feasibility and reliability of a telephone based brief neurocognitive assessment compared to the same tests delivered face-to-face. Methods: Brain metastases patients to be treated with whole brain radiotherapy (WBRT) were assessed using a brief validated neurocognitive battery at baseline, at 1 month and 3 months following WBRT (in person and over the phone). The primary outcome was feasibility and inter-procedural (in person versus telephone) reliability. The secondary objective was to evaluate the change in neurocognitive function before and after WBRT. Results: Out of 39 patients enrolled, 82% of patients completed the baseline in-person and telephone neurocognitive assessments. However, at 1 month, only 41% of enrolled patients completed the in-person and telephone cognitive assessments and at 3 months, only 10% of patients completed them. Results pertaining to reliability and change in neurocognitive function will be updated. Conclusion: The pre-defined definition of feasibility (at least 80% completion for face to face and telephone neurocognitive assessments) was met at baseline. However, a large proportion of participants did not complete either telephone or in person neurocognitive follow-up at 1 month and at 3 months post-WBRT. Attrition remained a challenge for neurocognitive testing in this population even when a telephone-based brief assessment was used.
Radio survey datasets comprise an increasing number of individual observations stored as sets of multidimensional data. In large survey projects, astronomers commonly face limitations regarding: 1) interactive visual analytics of sufficiently large subsets of data; 2) synchronous and asynchronous collaboration; and 3) documentation of the discovery workflow. To support collaborative data inquiry, we present encube, a large-scale comparative visual analytics framework. encube can utilise advanced visualization environments such as the CAVE2 (a hybrid 2D and 3D virtual reality environment powered with a 100 Tflop/s GPU-based supercomputer and 84 million pixels) for collaborative analysis of large subsets of data from radio surveys. It can also run on standard desktops, providing a capable visual analytics experience across the display ecology. encube is composed of four primary units enabling compute-intensive processing, advanced visualisation, dynamic interaction, parallel data query, along with data management. Its modularity will make it simple to incorporate astronomical analysis packages and Virtual Observatory capabilities developed within our community. We discuss how encube builds a bridge between high-end display systems (such as CAVE2) and the classical desktop, preserving all traces of the work completed on either platform – allowing the research process to continue wherever you are.
One third of people after stroke, having survived the first few weeks, return home with significant residual disability, and can therefore benefit from an active, multidisciplinary rehabilitation programme. This is a comprehensive guide to rehabilitation after stroke, in which leading international authorities set out the basic neuroscientific principles that underlie brain recovery, including chapters on neural plasticity and neural imaging, and describe appropriate rehabilitation strategies for the many different functional problems that can arise after stroke. These include movement disorders, sensory loss, dysphagia and dysarthria, problems with continence and secual difficulties, and cognitive disorders. Also covered are measurement of disability and quality of life, assistive technology and vocational rehabilitation. It is therefore an essential handbook and reference for all members of the multidisciplinary stroke rehabilitation team, including medical personnel, therapists, clinical neuropsychologists and rehabilitation nurses.
Measurements are presented of the frequency of vortex shedding from two circular cylinders in a staggered arrangement. Seven different cylinders were used in turn as the upstream cylinder and the ratio of the diameter of the upstream cylinder to that of the downstream cylinder ranged from 0·00422 to 0·571. For a constant free-stream velocity changing the upstream cylinder changed the frequency of vortex shedding from the cylinder. It was found that the frequency of vortex shedding from the downstream cylinder N synchronised with that of the upstream cylinder n over a range of the latter frequency. When the frequencies were synchronised the ratio of the frequencies was given by n/N = 2. This behaviour is characteristic of a lock-in process.
Lock-in was found at each of the four upstream cylinder positions tried. However, it was only when the upstream cylinder position was such that the upstream cylinder only weakly affected the flow about the downstream cylinder that lock-in was accompanied by a decrease in the base pressure. The time-mean drag force then increased with lock-in, but by a small amount only. On the other hand the fluctuating lift force increased substantially.
This paper describes the results of an investigation of the flow over two cylinders in which the diameter of the upstream cylinder is half that of the downstream cylinder. Measurements were made of the surface pressure distribution around the downstream cylinder, and of the base pressures and Strouhal numbers of the two cylinders for separations between 1·32 D and 3·88 D, where D is the diameter of the downstream cylinder, and for angles of stagger between 0° and 45°.
With the cylinders in tandem two different flows were found, and it is suggested that there is a step change between the flows at a critical separation.
The behaviour of the measured quantities with a change of the angle of stagger is found, in general, to depend on whether the separation is less or greater than the critical separation. For each separation an angle of stagger is found at which the pressure distribution has a strong asymmetry over the rear of die cylinder. These pressure distributions are similar to each other, and they indicate the presence of an enhanced flow over the upper half of the cylinder. Also the lift force, for a given separation, then has its maximum value.
It is found that for separations greater than the critical separation the Strouhal numbers of the vortex shedding from the two cylinders are identical over a considerable range in the angle of stagger.