We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper reports an expansion of the English as a second language (L2) component of the Multilingual Eye Movement Corpus (MECO L2), an international database of eye movements during text reading. While the previous Wave 1 of the MECO project (Kuperman et al., 2023) contained English as a L2 reading data from readers with 12 different first language (L1) backgrounds, the newly collected dataset adds eye-tracking data on English text reading from 13 distinct L1 backgrounds (N = 660) as well as participants’ scores on component skills of English proficiency and information about their demographics and language background and use. The paper reports reliability estimates, descriptive statistics, and correlational analyses as means to validate the expansion dataset. Consistent with prior literature and the MECO Wave 1, trends in the MECO Wave 2 data include a weak correlation between reading comprehension and oculomotor measures of reading fluency and a greater L1-L2 contrast in reading fluency than reading comprehension. Jointly with Wave 1, the MECO project includes English reading data from more than 1,200 readers representing a diversity of native writing systems (logographic, abjad, abugida, and alphabetic) and 19 distinct L1 backgrounds. We provide multiple pointers to new venues of how L2 reading researchers can mine this rich publicly available dataset.
We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments.
Technical summary
A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations.
Social media summary
Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science.
An internationally approved and globally used classification scheme for the diagnosis of CHD has long been sought. The International Paediatric and Congenital Cardiac Code (IPCCC), which was produced and has been maintained by the International Society for Nomenclature of Paediatric and Congenital Heart Disease (the International Nomenclature Society), is used widely, but has spawned many “short list” versions that differ in content depending on the user. Thus, efforts to have a uniform identification of patients with CHD using a single up-to-date and coordinated nomenclature system continue to be thwarted, even if a common nomenclature has been used as a basis for composing various “short lists”. In an attempt to solve this problem, the International Nomenclature Society has linked its efforts with those of the World Health Organization to obtain a globally accepted nomenclature tree for CHD within the 11th iteration of the International Classification of Diseases (ICD-11). The International Nomenclature Society has submitted a hierarchical nomenclature tree for CHD to the World Health Organization that is expected to serve increasingly as the “short list” for all communities interested in coding for congenital cardiology. This article reviews the history of the International Classification of Diseases and of the IPCCC, and outlines the process used in developing the ICD-11 congenital cardiac disease diagnostic list and the definitions for each term on the list. An overview of the content of the congenital heart anomaly section of the Foundation Component of ICD-11, published herein in its entirety, is also included. Future plans for the International Nomenclature Society include linking again with the World Health Organization to tackle procedural nomenclature as it relates to cardiac malformations. By doing so, the Society will continue its role in standardising nomenclature for CHD across the globe, thereby promoting research and better outcomes for fetuses, children, and adults with congenital heart anomalies.
A number of factors contribute to the lack of access to modern forms of energy. They include low income levels, unequal income distribution, inequitable distribution of modern forms of energy, a lack of financial resources to build the necessary infrastructure, weak institutional and legal frameworks, and a lack of political commitment to the scaling up of services. An absence of specific policies oriented to poverty alleviation often explains inequitable economic growth and, consequently, inequality in access to and use of energy. In recent years, several developing countries have defined targets aimed at improving access to electricity, but many developing countries still have no modern forms of energy access targets in place that address meeting basic energy services, including modern fuels for cooking and mechanical power.
As Chapter 2 argues, developing countries require adequate access to modern energy, especially among the poor, in order to meet the Millennium Development Goals (MDGs) as well as their own national development objectives. In line with GEA objectives, Chapter 17 pathways are designed to describe transformative changes toward a more sustainable future. A specific feature of the GEA energy transition pathways is that they simultaneously achieve normative goals related to all major energy challenges, including environmental impacts of energy conversion and use, as well as energy security and energy access. ‘Energy access’ refers to those challenges clearly described in Chapter 19, which will be addressed in this chapter.
Affordable and sustainable universal access to modern forms of energy depends on the evolution of income level and income distribution.
Acanthocheilonema viteae, Litomosoides carinii and Setaria cervi were found to actively synthesize proteins in vitro. Different centrifugation fractions and their TCA-precipitable fractions were assessed for the distribution of newly synthesized proteins. Penicillin and streptomycin inhibited the process in A. viteae. The synthesis in S. cervi was susceptible to puromycin, chloramphenicol, cycloheximide, neomycin and polymyxin B. The process in L. carinii was strongly blocked by puromycin while chloramphenicol had no significant effect.
This paper is devoted to the study of the solvability of certain one-and multidimensional Abel-type integral equations involving the Gauss hypergeometric function as their kernels in the space of summable functions. The multidimensional equations are considered over certain pyramidal domains and the results obtained are used to present the multidimensional pyramidal analogues of generalized fractional calculus operators and their properties.
We obtain representations for the Mellin transform of the product of generalized hypergeometric functions0F1[−a2x2]1F2[−b2x2]fora, b > 0. The later transform is a generalization of the discontinuous integral of Weber and Schafheitlin; in addition to reducing to other known integrals (for example, integrals involving products of powers, Bessel and Lommel functions), it contains numerous integrals of interest that are not readily available in the mathematical literature. As a by-product of the present investigation, we deduce the second fundamental relation for3F2[1]. Furthermore, we give the sine and cosine transforms of1F2[−b2x2].
In some recent investigations involving certain differential operators for a general family of Lagrange polynomials, Chan el al. encountered and proved a certain summation identity for the Lagrange polynomials in several variables. In the present paper, we derive some generalizations of this summation identity for the Chan-Chyan-Srivastava polynomials in several variables. We also discuss a number of interesting corollaries and consequences of our main results.
It is observed (among other things) that a theorem on bilinear and bilateral generating functions, which was given recently in the predecessor of this Journal, does not hold true as stated and proved earlier. Several possible remedies and generalizations, which indeed are relevant to the present investigation of various other results on bilinear and bilateral generating functions, are also considered.
The authors derive a general theorem on partly bilateral and partly unilateral generating functions involving multiple series with essentially arbitrary coefficients. By appropriately specialising these coefficients, a number of (known or new) results are shown to follow as applications of the theorem.
An interesting limit formula for the Riemann Zeta function $\zeta (n) (n\in \mathbb{N}\backslash \{1\})$ was contained implicitly in a paper by K. S. Williams [17]. In the case of $\zeta(2n)\ (n\in \mathbb{N})$, we show that Williams' limit formula, and three other analogous limit formulas proven here, involve polynomials of degree $2n$. We also determine these polynomials explicitly and deduce, as an immediate consequence, Euler's celebrated relation between $\zeta(2n)$ and the familiar Bernoulli numbers $B_{2n}$. Each of our closed-form summation formulas, expressing a finite trigonometric sum in terms of higher-order Bernoulli polynomials, is capable of yielding many (new or known) special cases and consequences.
To examine a comprehensive approach for preventing percutaneous injuries associated with phlebotomy procedures.
Design and Setting:
From 1993 through 1995, personnel at 10 university-affiliated hospitals enhanced surveillance and assessed underreporting of percutaneous injuries; selected, implemented, and evaluated the efficacy of phlebotomy devices with safety features (ie, engineered sharps injury prevention devices [ESIPDs]); and assessed healthcare worker satisfaction with ESIPDs. Investigators also evaluated the preventability of a subset of percutaneous injuries and conducted an audit of sharps disposal containers to quantify activation rates for devices with safety features.
Results:
The three selected phlebotomy devices with safety features reduced percutaneous injury rates compared with conventional devices. Activation rates varied according to ease of use, healthcare worker preference for ESIPDs, perceived “patient adverse events,” and device-specific training.
Conclusions:
Device-specific features and healthcare worker training and involvement in the selection of ESIPDs affect the activation rates for ESIPDs and therefore their efficacy. The implementation of ESIPDs is a useful measure in a comprehensive program to reduce percutaneous injuries associated with phlebotomy procedures.
In a recent paper [5], the classical Bernoulli and Euler polynomials were expressed
as finite sums involving the Hurwitz zeta function. The object of this sequel is first to
give several remarkably shorter proofs of each of these summation formulas. Various
generalizations and analogues, which are relevant to the present investigation, are
also considered.
The quality and composition of ultra-thin 2.0 nm gate dielectrics advocated for the 0.1 μm technology regime is expected to significantly impact gate tunneling currents, P+-gate dopant depletion effects and boron penetration into the substrate in PMOSFETs. This paper presents a comparative assessment of alternative grown and deposited gate dielectrics in sub-micron fabricated devices. High quality rapid-thermal CVD oxides and oxynitrides are examined as alternatives to conventional furnace grown gate oxides. An alternative gate process using in-situ boron doped and RTCVD deposited poly-Si is explored. PMOSFETs with Leff down to 0.06 μm were fabricated using a 0.1 μm technology. Electrical characterization of fabricated devices revealed excellent control of gate-boron depletion with the in-situ gate deposition process in all devices. Boron penetration of 2.0 nm gate oxides was effectively controlled by the use of a lower temperature RTA process. The direct tunneling leakage, although significant at these thicknesses, was less than 1 mA/cm2 at Vd = −1.2 V for all dielectrics. MOSFETs with comparable drive currents and excellent junction and off-state leakages were obtained with each dielectric.
For Lauricella's hypergeometric function F(n)D of n variables, we prove two formulas exhibiting its behaviour near the boundaries of the n-dimensional region of convergence of the multiple series defining it. Each of these results can be applied to deduce the corresponding properties of several simpler hypergeometric functions of one, two, and more variables.
The authors begin by presenting a brief survey of the various useful methods of solving certain integral equations of Fredholm type. In particular, they apply the reduction techniques with a view to inverting a class of generalized hypergeometric integral transforms. This is observed to lead to an interesting generalization of the work of E. R. Love [9]. The Mellin transform technique for solving a general Fredholm type integral equation with the familiar H-function in the kernel is also considered.
The object of the present paper is first to derive an interesting unification (and generalization) of a fairly large number of finite summation formulas including, for example, those that appeared in this Journal recently. We then briefly remark on its various (known or new) special cases which are associated with certain classes of hypergeometric polynomials in one and two variables. We also give several further generalizations (involving multiple series with essentially arbitrary terms) which are shown to be applicable in the derivation of analogous summation formulas for hypergeometric series (and polynomials) in three and more variables. Finally, with a view to presenting relevance of these types of results in various seemingly diverse areas of applied sciences and engineering, some indication of applicability is provided.
A single-valued function f(z) is said to be univalent in a domain if it never takes on the same value twice, that is, if f(z1) = f(z2) for implies that z1 = z2. A set is said to be starlike with respect to the line segment joining w0 to every other point lies entirely in . If a function f(z) maps onto a domain that is starlike with respect to w0, then f(z) is said to be starlike with respect to w0. In particular, if w0 is the origin, then we say that f(z) is a starlike function. Further, a set is said to be convex if the line segment joining any two points of lies entirely in . If a function f(z) maps onto a convex domain, then we say that f(z) is a convex function in .
By using a certain linear operator defined by a Hadamard product or convolution, several interesting subclasses of analytic functions in the unit disk are introduced and studied systematically. The various results presented here include, for example, a number of coefficient estimates and distortion theorems for functions belonging to these subclasses, some interesting relationships between these subclasses, and a wide variety of characterization theorems involving a certain functional, some general functions of hypergeometric type, and operators of fractional calculus. Some of the coefficient estimates obtained here are fruitfully applied in the investigation of certain subclasses of analytic functions with fixed finitely many coefficients.