We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aims of this study were to show the existence of individual differences in the distribution of sperm acrosome-associated 1 (SPACA1) among male patients of infertile couples and to examine their possible impact on the outcomes of conventional in vitro fertilization (IVF). The spermatozoa were collected from male patients of infertile couples, washed by centrifugation, collected by the swim-up method, and then used for clinical treatments of conventional IVF. The surplus sperm samples were fixed and stained with an anti-SPACA1 polyclonal antibody for the immunocytochemistry. In the clinical IVF treatments, fertilization rates and blastocyst development rates were evaluated. The immunocytochemical observations revealed that SPACA1 were localized definitely in the acrosomal equatorial segment and variedly in the acrosomal principal segment. Specifically, the detection patterns of SPACA1 in the acrosomal principal segment could be classified into three categories: (A) strong, (B) intermediate or faint, and (C) almost no immunofluorescence. The SPACA1 indexes were largely different among male patients with the wide range from 13 to 199 points. The SPACA1 indexes were significantly correlated with developmental rates of embryos to blastocysts (r = 0.829, P = 0.00162), although they were barely associated with fertilization rates at 19 h after insemination (r = 0.289, P = 0.389). These results suggest that the distribution of SPACA1 in sperm affects the outcomes of conventional IVF. In conclusion, this study provides initial data to promote large-scale clinical investigation to demonstrate that the SPACA1 indexes are valid as molecular biomarkers that can predict the effectiveness of conventional IVF of infertile couples.
It is now firmly established that a small anisotropy of the galactic cosmic rays exists, observable from Earth as a variation of intensity in sidereal time. The problem now is to determine more clearly the characteristics of the anisotropy and, in particular, its detailed spatial structure and how it depends upon the energy and composition of the cosmic rays. This is a very difficult task and, in the final analysis, may not be fully achievable from Earth-based observations. The purpose of the present paper is to describe briefly an installation now operating in Tasmania to provide further information on the spatial structure of the anisotropy.
In the previous work, it is reported that the Spin-Seebeck effect (SSE), which refer to the generation of a spin current from a temperature gradient, can be enhanced by Fe interface treatment. Here, we investigated the Fe thickness (dFe) dependency of spin-Seebeck voltage (VSSE) and mixing conductance (gr) in Pt/Fe/Bi:YIG/SGGG system. As a result, magnitude of VSSE had a peak at dFe ≓ 1 ML (monolayer , ≓ 0.3 mm), and also increase of gr was saturated at this point. It suggests that VSSE increase with increasing gr when dFe is smaller than 1.0 ML. For the case in which dFe is larger than 1.0ML, however, VSSE decreases due to a spin current decay in Fe layer with a constant gr. These experimental results are consistent with previous theoretical works.
In general, solitary right aortic arch carries the left-sided ductus arteriosus communicating between the left subclavian and pulmonary arteries or the right-sided ductus connecting the descending aorta to the left pulmonary artery. Serial sections of fifteen 5- to 6-week-old embryos and ten 8- to 9-week-old fetuses suggested that the pathogenesis was unrelated to inversion due to dysfunction in gene cascades that control the systemic left/right axis. With inversion, conversely, the ductus or the sixth pharyngeal arch artery should connect to the right pulmonary artery. The disappearance of the right aortic arch started before the caudal migration of the aortic attachment of the ductus. Sympathetic nerve ganglia developed immediately posterior to both aortae, with a single embryonic specimen showing a large ganglion at the midline close to the union of the aortic arches. These ganglia may interfere with blood flow through the distal left arch, resulting in the ductus ending at the descending aorta behind the oesophagus. In another fetus examined, a midline shift of the ductus course resulted in the trachea curving posteriorly. Therefore, solitary right arch is likely to accompany abnormalities of the surrounding structures. The timing and site of the obstruction should be different between types: an almost midline obstruction near the aortic union needed for the development of the left-sided ductus and a distal obstruction near the left subclavian arterial origin needed for the development of the right-sided ductus. A mass effect of the sympathetic ganglia may explain the pathogenesis of any type of anomalous ductus arteriosus shown in previous reports of the solitary right arch.
Recently, the issue of sustainable resource management has been increasingly recognized.Economic growth of human activity is associated with a rapid rise in the use of resourcesin our economy, and society has a potential environmental impact. The UNEP InternationalResource Panel (IRP) pointed out the importance of decoupling resource use and negativeenvironmental impacts from economic activity (UNEP IRP 2011). In order tooptimize the material cycles and increase resource efficiency, material flow analysis(MFA) is a powerful tool to understand the resource consumption and material cycle in thenational economy. In this study, we present the results of global material flow analysisof nickel, which is one of the important resources for reducing energy use andCO2 emission inour society, and discuss the importance and possibility of controlling its resourcelogistics. This study also introduces the challenge of identifying the land-use changes innickel mining sites by a remote-sensing technique, and knowledge to increase the resourceefficiency in metal recycling based on the metallurgical thermodynamic approach. Theresults indicated the importance of recovery of nickel in recycling policies forend-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies andimplementation of designs for recycling/disassembly at the manufacturing phase are needed.Possible solutions include development of sorting processes for steel scrap andintroduction of easier methods for identifying the composition of secondary resources.Recovery of steel scrap with a high alloy content will reduce primary inputs of alloyingelements and contribute to more efficient resource use.
We present the discovery of out-flow like plasma emissions with the Suzaku and ASCA data. Those plasmas have a size of ∼150 pc. Remarkably, the southern plasma is in a recombination dominant phase, which is not predicted by standard shock heating. A plausible scenario is either photoionization due to strong jet-like X-rays from Sgr A* or rapid cooling due to adiabatic expansion of a blowout plasma from the Galactic center about 105 years ago.
We describe the current, 9-spacecraft Interplanetary Network (IPN). The IPN detects about325 gamma-ray bursts per year, of which about 100 are not localized by any other missions.We give some examples of how the data, which are public, can be utilized.
Today I am a researcher at Google and one of a handful of employees, out of aglobal workforce of more than 30,000, the with a PhD in political science. But lessthan two years ago, I was a tenure track professor of political science at aresearch university and could barely have imagined the unusual path my professionallife would take. That path has been incredibly rewarding, as well as instructiveboth of the broad value a PhD in political science (and the social sciences moregenerally) and of the growing role for quantitative research outside of the academy.I recount much of that path below, with the hope that it might prove useful forthose graduate students, post-docs, and professors who might be inclined to applythe knowledge and skills they have acquired in unconventional professional paths oftheir own.
In this study, aluminized, boronized, chromized and siliconized gray cast iron plate specimens were prepared, and their microstructures and tribological properties were investigated. The surfaces of the aluminized, boronized, chromized and siliconized specimens mainly consisted of FeAl, Fe2B, (Cr, Fe)23C6 and FeSi phases, respectively. Also, the surface of the boronized specimen exhibited the highest microvickers hardness of all the specimens. The aluminized, boronized and chromized specimens exhibited friction coefficients as low as the non-coated specimens when sliding against AISI 52100 steel ball specimens in poly-alpha-olefin. In addition, the boronized and chromized specimens exhibited much higher wear resistance than the non-coated specimens.
Resonant elastic X-ray scattering (RXS) at the erbium absorption edge was investigated in the orbital-ordered compound ErVO3. An RXS signal resonating near the Er L3-edge was clearly observed at (1 0 0). Using this signal, we studied the relation between the anisotropy of the Er 5d orbital and the V 3d orbital ordering because the covalency between the Er 5d and V 3d orbitals is expected to stabilize the C-type orbital ordering of the V 3d electrons.
The orbital ordering in perovskite-type vanadium oxides, RVO3 (R: rare earth), has been investigated by resonant X-ray scattering (RXS) near the V K-edge energy. The G-type orbital order, C-type orbital order and orbital disorder phases are elucidated on the basis of the azimuthal-angle and polarization dependence of the RXS signal reflecting the orbital ordering.
Plasmas with long life times (∼20 ns) are generated in a cavity target by intense CO2 laser pulses (2 × 1014W/cm2). The plasma life depends on the configuration of irradiation and target, which may infer thermal conduction inhibition by the laser-generated magnetic field. The experimental results agree with those of computer simulations with magnetic inhibition of thermal conduction.
The interaction of relativistic electrons produced by ultrafast lasers and focussing them on strongly precompressed thermonuclear fuel is analytically modelled. Energy loss to target electrons is treated through binary collisions and Langmuir wave excitation. The overall penetration depth is determined by quasielastic and multiple scattering on target ions. Thus, it appears possible to ignite efficient hot spots in a target with density larger than 300 g/cc.
Of the many vital functions that political parties serve in American democracy, selecting candidates for public office is near the top of the list. Giovanni Sartori (1976) cites this purpose as their chief defining element—claiming that, at a minimum, a party is a “political group that presents at elections, and is capable of placing through elections, candidates for public office” (64). Moreover, understanding how parties vet, groom, select, and promote candidates is central to empirically evaluating the strength of political party organizations, the quality of elected policymakers, and ultimately the effectiveness of government. For scholars of American politics, this has led to fruitful lines of research on the processes that the Democratic and Republican Parties use to select their candidates—namely the conventions, primaries, and caucuses that nominate individuals for various federal, state, and local offices. For example, many have investigated the effects of reforms to the presidential nomination process in the early 1970s (Aldrich 1993; Hagen and Mayer 2000; Reiter 1985; Wayne 2000), some arguing that it took power of choosing candidates away from the party organizations and towards other institutions like the press, interest groups, and small ideological factions (Polsby 1983) with potentially negative consequences for governance.
We report the results of mid- to far-infrared spectroscopic observations of Galactic star-forming regions with ISO, Spitzer, and AKARI. Owing to the high sensitivity of the IRS onboard Spitzer, we detected [Si II] 35 μm, [Fe II] 26 μm, and [Fe III] 23 μm lines widely in low-density star-forming regions, and derived gas-phase Si and Fe abundances as 3–100% and <22%, respectively. With the FTS onboard AKARI, we obtained the spatial distribution ofthe [O III] 88 μm emission in two star-forming regions.