We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sediments within accretionary complexes, preserving key information on crust growth history of Central Asian Orogenic Belt, did not get enough attention previously. Here, we conduct comprehensive geochemical study on the turbidites from the North Tianshan Accretionary Complex (NTAC) in the Chinese West Tianshan orogen, which is a good example of sediments derived from juvenile materials. The turbidites, composed of sandstone, siltstone, and argillaceous siliceous rocks, are mainly Carboniferous. All the investigated samples have relatively low Chemical Index of Alteration values (35–63) and Plagioclase Index of Alteration values (34–68), indicating relatively weak weathering before erosion and deposition. The sandstone and siltstone, and slate samples display high Index of Compositional Variability values of 0.89–1.50 and 0.89–0.93, suggesting a relatively immature source. The sandstones and siltstones were mainly derived from intermediate igneous rocks, and the slates from felsic igneous rocks, formed in oceanic/continental arc settings. The investigated samples roughly display high positive εNd(t) values (mainly at +5.5 to +7.9, except one spot at +0.8), with corresponding Nd model ages at 672 Ma–522 Ma (except one at ∼1.1 Ga). Combined with the previous studies, we suggest that the turbidites in the NTAC were mainly derived from intermediate to felsic igneous rocks with juvenile arc signature, and thus the northern Chinese West Tianshan is a typical site with significant Phanerozoic crust growth.
We present the results of two population surveys conducted 10 years apart (December 2010–February 2011 and December 2020–January 2021) of the Critically Endangered white-headed langur Trachypithecus leucocephalus in the Chongzuo White-Headed Langur National Nature Reserve, Guangxi Province, China. In the first survey, we recorded 818 individuals in 105 groups and 16 solitary adult males. In the second survey, we recorded 1,183 individuals in 128 groups and one solitary adult male. As a result of government policies, poaching for food and traditional medicine is no longer a primary threat to these langurs. However, severe forest loss and fragmentation caused by human activities could limit any future increase of this langur population.
We have grown intermetallic ErPd2Si2 single crystals employing laser diodes with the floating-zone method. The temperature dependence of the unit-cell parameters was determined using synchrotron and in-house X-ray powder diffraction measurements from 20 to 500 K. The diffraction patterns fit well with the tetragonal I4/mmm space group (No. 139) with two chemical formulae within the unit cell. The synchrotron powder diffraction study shows that the refined unit-cell parameters are a = 4.10320(2) Å, c = 9.88393(5) Å at 298 K and a = 4.11737(2) Å, c = 9.88143(5) Å at 500 K, resulting in the unit-cell volume V = 166.408(1) Å3 (298 K) and 167.517(2) Å3 (500 K). In the whole studied temperature range, no structural phase transition was observed. Upon cooling, the unit-cell parameters a and c are shortened and elongated, respectively.
Researchers at the Centers for Disease Control and Prevention monitor unplanned school closure (USC) reports through online systematic searches (OSS) to assist public health emergency responses. We counted the additional reports identified through social media along with OSS to improve USC monitoring.
Methods:
Facebook and Twitter data of public-school districts and private schools in counties affected by California wildfires in October and December of 2017 and January of 2018 were retrieved. We computed descriptive statistics and performed multivariable logistic regression for both OSS and social media data.
Results:
Among the 362 public-school districts in wildfire-affected counties, USCs were identified for 115 (32%) districts, of which OSS identified 104 (90%), Facebook, 59 (52%), and Twitter, 37 (32%). These data correspond to 4622 public schools, among which USCs were identified for 888 (19.2%) schools, of which OSS identified 722 (81.3%), Facebook, 496 (55.9%), and Twitter, 312 (35.1%). Among 1289 private schools, USCs were identified for 104 schools, of which OSS identified 47 (45.2%), Facebook, 67 (64.4%), and Twitter, 29 (27.9%). USC announcements identified via social media, in addition to those via OSS, were 11 public school districts, 166 public schools, and 57 private schools.
Conclusion:
Social media complements OSS as additional resources for USC monitoring during disasters.
This study aimed to describe diet quality of pregnant women and explore the association between maternal diet and the prevalence of low birth weight (LBW) and small for gestational age (SGA). A total of 3856 participants from a birth cohort in Beijing, China, were recruited between June 2018 and February 2019. Maternal diet in the first and second trimesters was assessed by the Chinese diet balance index for pregnancy (DBI-P), using data collected by the inconsecutive 2-d 24-h dietary recalls. Logistic regressions were performed to explore the independent effects of DBI-P components on LBW and SGA. The prevalence of LBW and SGA was 3·8% and 6·0%, respectively. Dietary intakes of the participants were imbalanced. The proportions of participants having insufficient intake of vegetables (87·3% and 86·6%), dairy product (95·9% and 96·7%) and aquatic foods (80·5% and 85·3%) were high in both trimesters. The insufficiency of fruit intake was more severe in the second (85·2%) than that in the first trimester (22·5%) (P < 0·05). After adjusting for potential confounders, the intake of fruits and dairy in the second trimester was negatively associated with the risk of LBW (OR = 0·850, 95% CI: 0·723, 0·999) and SGA (OR = 0·885, 95% CI: 0·787, 0.996), respectively. Sufficient consumption of fruits and dairy products in pregnancy may be suggested in order to prevent LBW and SGA.
The findings regarding the associations between red meat, fish and poultry consumption, and the metabolic syndrome (Mets) have been inconclusive, and evidence from Chinese populations is scarce. A cross-sectional study was performed to investigate the associations between red meat, fish and poultry consumption, and the prevalence of the Mets and its components among the residents of Suzhou Industrial Park, Suzhou, China. A total of 4424 participants were eligible for the analysis. A logistic regression model was used to estimate the OR and 95 % CI for the prevalence of the Mets and its components according to red meat, fish and poultry consumption. In addition, the data of our cross-sectional study were meta-analysed under a random effects model along with those of published observational studies to generate the summary relative risks (RR) of the associations between the highest v. lowest categories of red meat, fish and poultry consumption and the Mets and its components. In the cross-sectional study, the multivariable-adjusted OR for the highest v. lowest quartiles of consumption was 1·23 (95 % CI 1·02, 1·48) for red meat, 0·83 (95 % CI 0·72, 0·97) for fish and 0·93 (95 % CI 0·74, 1·18) for poultry. In the meta-analysis, the pooled RR for the highest v. lowest categories of consumption was 1·20 (95 % CI 1·06, 1·35) for red meat, 0·88 (95 % CI 0·81, 0·96) for fish and 0·97 (95 % CI 0·85, 1·10) for poultry. The findings of both cross-sectional studies and meta-analyses indicated that the association between fish consumption and the Mets may be partly driven by the inverse association of fish consumption with elevated TAG and reduced HDL-cholesterol and, to a lesser extent, fasting plasma glucose. No clear pattern of associations was observed between red meat or poultry consumption and the components of the Mets. The current findings add weight to the evidence that the Mets may be positively associated with red meat consumption, inversely associated with fish consumption and neutrally associated with poultry consumption.
In this paper, the generation of relativistic electron mirrors (REMs) and the reflection of an ultra-short laser off this mirrors are discussed, applying two-dimensional particle-in-cell (2D-PIC) simulations. REMs with ultra-high acceleration and expanding velocity can be produced from a solid nanofoil illuminated normally by an ultra-intense femtosecond laser pulse with a sharp rising edge. Chirped attosecond pulse can be produced through the reflection of a counter-propagating probe laser off the accelerating REM. In the electron moving frame, the plasma frequency of the REM keeps decreasing due to its rapidly expanding. The laser frequency, on the contrary, keeps increasing due to the acceleration of REM and the relativistic Doppler shift from the lab frame to the electron moving frame. Within an ultra-short time interval, the two frequencies will be equal in the electron moving frame, which leads the resonance between laser and REM. The reflected radiation near this interval and the corresponding spectra will be amplified due to the resonance. Through adjusting the arriving time of the probe laser, certain part of the reflected field could be selectively amplified or depressed, leading to the selectively adjusting of the corresponding spectra.
This Research Reflection short review presents an overview of the effects of heat stress on dairy cattle udder health and discusses existing heat stress mitigation strategies for a better understanding and identification of appropriate abatement plans for future stress management. Due to high ambient temperatures with high relative humidity in summer, dairy cows respond by changes of physical, biochemical and biological pathways to neutralize heat stress resulting in decreased production performance and poorer immunity resulting in an increased incidence of intramammary infections (IMI) and a higher somatic cell count (SCC). In vitro studies on bovine polymorphonuclear cells (PMN) suggested that heat stress reduces the phagocytosis capacity and oxidative burst of PMN and alters the expression of apoptotic genes and miRNA which, together with having a negative effect on the immune system, may explain the increased susceptibility to IMI. Although there are limited data regarding the incidence rate of clinical mastitis in many countries or regions, knowledge of SCC at the cow or bulk tank level helps encourage farmers to improve herd health and to develop strategies for infection prevention and cure. Therefore, more research into bulk tank SCC and clinical mastitis rates is needed to explain the effect of heat stress on dairy cow udder health and functions that could be influenced by abatement plans.
Since December 2019, China has experienced a widespread outbreak of COVID-19. However, at the early stage of outbreak, investigations revealed a variety of patterns resulting in the transmission of COVID-19. Thus, it is essential to understand the transmission types and the potential for sustained human-to-human transmission. Moreover, the information regarding the characteristics of transmission helps in coordinating the current screening programme, and controlling and containing measures, and also, helps in deciding the appropriate quarantine duration. Thus, this investigation reports an outbreak of COVID-19 in a family residing in Wenzhou, Zhejiang, China during the month of January−February 2020.
To aid emergency response, Centers for Disease Control and Prevention (CDC) researchers monitor unplanned school closures (USCs) by conducting online systematic searches (OSS) to identify relevant publicly available reports. We examined the added utility of analyzing Twitter data to improve USC monitoring.
Methods:
Georgia public school data were obtained from the National Center for Education Statistics. We identified school and district Twitter accounts with 1 or more tweets ever posted (“active”), and their USC-related tweets in the 2015-16 and 2016-17 school years. CDC researchers provided OSS-identified USC reports. Descriptive statistics, univariate, and multivariable logistic regression were computed.
Results:
A majority (1,864/2,299) of Georgia public schools had, or were in a district with, active Twitter accounts in 2017. Among these schools, 638 were identified with USCs in 2015-16 (Twitter only, 222; OSS only, 2015; both, 201) and 981 in 2016-17 (Twitter only, 178; OSS only, 107; both, 696). The marginal benefit of adding Twitter as a data source was an increase in the number of schools identified with USCs by 53% (222/416) in 2015-16 and 22% (178/803) in 2016-17.
Conclusions:
Policy-makers may wish to consider the potential value of incorporating Twitter into existing USC monitoring systems.
Chinese sturgeon (Acipenser sinensis) is an endangered species, listed as a grade I protected animal in China. The females rarely successfully develop their gonads from stage II to III in captivity, which handicaps the propagation of cultured Chinese sturgeon. The present study aimed to understand the effects of dietary lipid level on the ovarian development and the related regulation mechanism in female Chinese sturgeon. A 24-month feeding trial was conducted with 10-year-old Chinese sturgeons with ovaries at the developmental stage II, with three experimental diets containing 10, 14 and 18 % lipids. Ovary, muscle and serum samples were collected at four time points (6, 12, 18 and 24 months) for further analyses. Serum metabolomics and ovary transcriptomics analyses were conducted at 18 months. Results showed that only the 18 % lipid diet promoted ovary development to stage IV. Oocytes at stage II in this group also exhibited higher diameter and more lipid droplets. Serum TAG content in the 18 % group was significantly higher than in 10 and 14 % groups (both at 12 and 18 months). Oestradiol content in the 14 % group was significantly higher than in 10 and 18 % groups, except at 24 months. Metabolomic and transcriptomic results indirectly indicated that 14 % of dietary lipids benefited steroid hormone synthesis, while 18 % lipid facilitated arachidonic acid metabolism, cholesterol biosynthesis and vitellogenesis, although serum cholesterol content did not vary with dietary lipid level. In conclusion, 18 % dietary lipid is the optimal level for improving gonad development of female Chinese sturgeon.
This paper presents a hybrid strategy-based coordinate controller with a novel nonlinear disturbance observer for autonomous underwater vehicle manipulator systems (UVMSs). This method can reduce the influence from external unknown disturbances, inner coupling effects and model uncertainties by using a modified disturbance observer. Considering the natural redundancy property of the UVMS, the redundancy resolution algorithm is often utilized to give desired trajectories in the vehicle–joint space. However, because of the calibration errors, assembling errors and numerical errors, these desired trajectories may not lead the end-effector to the goal point accurately. To realize accurate motion control even when small errors exist in the planning phase, a hybrid strategy is introduced to transform the controller in the joint–vehicle space to the controller in the task space. Numerical simulations based on a UVMS have been carried out to testify the effectiveness of the proposed coordinate controller and the hybrid strategy. During the simulations, unknown disturbances are exerted upon the system. The trajectory tracking and error fixing performances are discussed in comparative analyses. The controller also maintains robust characteristics in comparison with the passivity-based controller and the proposed controller but without the disturbance observer. Experiments are also carried out to test its performance.
Four isonitrogenous and isoenergetic purified diets containing free arachidonic acid (ARA) or EPA (control group), 0·30 % ARA, 0·30 % EPA and 0·30 % ARA+EPA (equivalent) were designed to feed juvenile grass carp (10·21 (sd 0·10) g) for 10 weeks. Only the EPA group presented better growth performance compared with the control group (P<0·05). Dietary ARA and EPA were incorporated into polar lipids more than non-polar lipids in hepatopancreas but not intraperitoneal fat (IPF) tissue. Fish fed ARA and EPA showed an increase of serum superoxide dismutase and catalase activities, and decrease of glutathione peroxidase activity and malondialdehyde contents (P<0·05). The hepatopancreatic TAG levels decreased both in ARA and EPA groups (P<0·05), accompanied by the decrease of lipoprotein lipase (LPL) activity in the ARA group (P<0·05). Fatty acid synthase (FAS), diacylglycerol O-acyltransferase and apoE gene expression in the hepatopancreas decreased in fish fed ARA and EPA, but only the ARA group exhibited increased mRNA level of adipose TAG lipase (ATGL) (P<0·05). Decreased IPF index and adipocyte sizes were found in the ARA group (P<0·05). Meanwhile, the ARA group showed decreased expression levels of adipogenic genes CCAAT enhancer-binding protein α, LPL and FAS, and increased levels of the lipid catabolic genes PPARα, ATGL, hormone-sensitive lipase and carnitine palmitoyltransferase 1 (CPT-1) in IPF, whereas the EPA group only increased PPARα and CPT-1 mRNA expression and showed less levels than the ARA group. Overall, dietary EPA is beneficial to the growth performance, whereas ARA is more potent in inducing lipolysis and inhibiting adipogenesis, especially in IPF. Meanwhile, dietary ARA and EPA showed the similar preference in esterification and the improvement in antioxidant response.
In this study we report changes in Indian summer monsoon (ISM) intensity during the past ~ 3500 yr inferred from proxy indices at Lake Erhai, southwestern China. Both the pollen concentrations and other proxy indices, including sediment grain size, total organic carbon contents (TOC), and elemental contents (e.g., Fe, Al), clearly indicate a long term decreasing trend in ISM intensity over the late Holocene. During the period from approximately AD 750 to AD 1200, pollen concentrations of conifer and broadleaf trees, and herbs reached the lowest levels over the past ~ 3500 yr; while the pollen percentages of both herbs and broadleaf trees increased, suggesting a significant medieval drought. The grain size, TOC, and elemental contents also support an arid climate during the medieval period. The Little Ice Age (LIA) at Lake Erhai was characterized as cold and wet. The medieval and LIA climatic patterns at Lake Erhai were similar to those over most of the ISM areas, but anti-phase with those over East Asian summer monsoon (EASM) areas. We suspect that sea surface temperature variations in the Indo-Pacific oceans and the related land-sea thermal contrasts may be responsible for such hydroclimatic differences between EASM and ISM areas.
SG-III laser facility is now the largest laser driver for inertial confinement fusion research in China. The whole laser facility can deliver 180 kJ energy and 60 TW power ultraviolet laser onto target, with power balance better than 10%. We review the laser system and introduce the SG-III laser performance here.
Most species of the genus Eulecanium Cockerell (Hemiptera: Coccidae) are important economic pests for ornamental plants and fruit trees. Two morphologically similar species, Eulecanium giganteum Shinji and E. kuwanai Kanda, are distributed mainly in China and are quite difficult to identify because of the paucity of distinguishing characteristics, which can only be observed in slide-mounted young, adult females. Furthermore, we demonstrate here that the species occur in sympatry and on many of the same host plants. Mitochondrial cytochrome c oxidase I (COI) and the D2–D3 expansion segments of 28S rDNA were used for accurate identification of these two Eulecanium species from 19 different locations in China. The average K2P distances of COI sequences were 0.47% in E. kuwanai and 0.32% in E. giganteum, and the interspecific divergences varied from 7.23% to 8.34%. Neighbour-joining (NJ) trees of COI and 28S rDNA revealed two distinct non-overlapping clusters, respectively. Meanwhile, “best close match” analysis also showed that 100% of individuals were classified successfully using COI and 28 S sequences. Differentiating between E. giganteum and E. kuwanai is challenging when using ecological and morphological traits. In contrast, identification using DNA diagnostics appears to be very effective, especially when slide-mounted specimens are difficult to obtain.
Introduction: The mortality of Parkinson’s disease (PD) and its associated risk factors among clinically definite PD patients in China has been rarely investigated. Our study aimed to identify the mortality rates and predictors of death in PD patients in China. Methods: 157 consecutive, clinically definite PD patients from the urban area of Shanghai were recruited from a central hospital based movement disorder clinic in 2006. All patients were regularly followed up at the clinic until December 31, 2011, or death. Mortality and associations with baseline demographics, health and medical factors were then determined within the cohort. Results: After 5 years, 11(7%) patients had died. The standardised mortality ratio was 0.62 (95% CI 0.32 to 1.07, P=0.104). The main causes of death were pneumonia (54.5%, 6/11) and digestive disorders (18.2%, 2/11), respectively. Age at onset, independent living, the mini mental state examination score, the Parkinson’s disease sleep scale score and the Epworth sleepiness scale score at baseline were statistically significantly different between the survival group and the deceased group (P<0.05). Across all participants, risk factors for death included low mini mental state examination score, and high Epworth sleepiness scale score according to a binary variable logistic regression analysis. Conclusions: This study confirms the similar survival of patients with PD to the control population up to a follow-up of 5 years. Interventions tailored to potential risk factors associated with death may offer further benefits.
Ubiquitin proteasome system dysfunction is believed to play an important role in the development of Parkinson's disease (PD), and almost all studies till now have mainly focused on the susceptibility of dopaminergic neurons to proteasome inhibition. However, in fact, there are many other types of neurons such as cholinergic ones involved in PD. In our present study, we attempt to figure out what effect the failure of ubiquitin proteasome function would execute on cholinergic cells in culture.
Methods:
We treated cholinergic cells in culture with various doses of lactacystin. Then MTT assay was used to evaluate the cellular viability and the Annexin V-PI method was used to detect apoptosis. Both cellular soluble and insoluble polyubiquitinated proteins were detected by western blot. Furthermore, the mitochondrial membrane potential was analyzed using JC-1 and the intracellular production of reactive oxygen species (ROS) was determined using the fluorescent probe CM-H2DCFDA.
Results:
We found that low doses of lactacystin were enough to induce significant apoptotic cell death, disturb the mitochondrial membrane potential, and cause oxidative stress. We also found that the amounts of polyubiquitinated proteins dramatically increased with high doses, although the loss of cells did not increase accordingly.
Conclusions:
Our results suggest that cholinergic cells are sensitive to ubiquitin proteasome system dysfunction, which exerts its toxic effect by causing mitochondrial dysfunction and subsequent oxidative stress, not through polyubiquitinated proteins accumulation.
What reasoning rules can be used for the deduction of bisimulation formulas in coalgebraic specifications is problematic because those rules used in algebraic specifications possibly cannot be applied to bisimulation formulas. Although some categorical bisimulation proof methods for coalgebras have been proposed, they are not based on specification languages of coalgebras so that they cannot be used as reasoning rules. In this paper, a specification language based on paths of polynomial functors is proposed to specify polynomial coalgebras. Paths of polynomial functors give detailed observations and transitions on the state space of coalgebras so that the techniques used in transition system specifications can be applied to such a path-based language. In particular, because bisimulations can be characterized by paths, the notions of progressions, respectful functions and faithful contexts can be defined based on paths, and then bisimulation up-to proof techniques, including bisimulation up-to bisimilarities and up-to contexts for transition systems can be transformed into reasoning rules in the language. Several examples illustrate how to reason syntactically about bisimulations in the language by using the rules induced by the bisimulation proof techniques.