We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study explores an interesting fluid–structure interaction scenario: the flow past a flexible filament fixed at two ends. The dynamic performance of the filament under various inclination angles ($\theta$) was numerically investigated using the immersed boundary method. The motion of the filament in the $\theta$–$Lr$ space was categorised into three flapping modes and two stationary modes, where $Lr$ is the ratio of filament length to the distance between its two ends. The flow fields for each mode and their transitions were introduced. A more in-depth analysis was carried out for flapping at a large angle (FLA mode), which is widely present in the $\theta$–$Lr$ space. The maximum width $W$ of the time-averaged shape of the filament has been shown to strongly correlate with the flapping frequency. After non-dimensionalising based on $W$, the flapping frequency shows little variation across different $Lr$ and $\theta$. Moreover, two types of lift variation process were also identified. Finally, the total lift, drag and lift-to-drag ratio of the system were studied. Short filaments, such as those with $Lr\leqslant 1.5$, were shown to significantly increase lift and the lift-to-drag ratio over a wide range of $\theta$ compared with a rigid plate. Flow field analysis concluded that the increases in pressure difference on both sides of the filament, along with the upper part of the flexible filament having a normal direction closer to the $y$ direction, were the primary reasons for the increase in lift and lift-to-drag ratio. This study can provide some guidance for the potential applications of flexible structures.
Aircraft with bio-inspired flapping wings that are operated in low-density atmospheric environments encounter unique challenges associated with the low density. The low density results in the requirement of high operating velocities of aircraft to generate sufficient lift resulting in significant compressibility effects. Here, we perform numerical simulations to investigate the compressibility effects on the lift generation of a bio-inspired wing during hovering flight using an immersed boundary method. The aim of this study is to develop a scaling law to understand how the lift is influenced by the Reynolds and Mach numbers, and the associated flow physics. Our simulations have identified a critical Mach number of approximately $0.6$ defined by the average wing-tip velocity. When the Mach number is lower than 0.6, compressibility does not have significant effects on the lift or flow fields, while when the Mach number is greater than $0.6$, the lift coefficient decreases linearly with increasing Mach number, due to the drastic change in the pressure on the wing surface caused by unsteady shock waves. Moreover, the decay rate is dependent on the Reynolds number and the angle of attack. Based on these observations, we propose a scaling law for the lift of a hovering flapping wing by considering compressible and viscous effects, with the scaled lift showing excellent collapse.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
Gust response has consistently been a concern in engineering. Critical theories have been proposed in the past to predict the unsteady lift response of an airfoil experiencing vertical gusts by Atassi, and longitudinal gusts by Greenberg. However, their applicability for an airfoil with non-zero angles of attack still needs clarification. Thus, force measurements are conducted to examine these theories’ validity and quasi-steady corrections are applied to compensate potential disparities between the idealised and real flow conditions. Velocity measurements are performed to scrutinise the effect of gusts on the flow around the airfoil, and subsequently to reveal the underlying mechanism governing the airfoil's response to gust-induced perturbations. In the study, two pitching vanes are arranged upstream to generate periodic vertical and longitudinal gusts, whereas a downstream airfoil with angles of attack of 0–12° is subjected to two gust types. It is found that Greenberg's theory demonstrates superior predictive capability in pre-stall regimes, with the potential for its effectiveness to be expanded to post-stall regimes through theoretical refinements. In contrast, Atassi's theory exhibits significant deviations from experimental outcomes across the measured angles of attack. Nevertheless, a modified version of the theory aligns better with experimental results at small angles of attack, whereas substantial discrepancies persist as the angle of attack increases. In the pre-stall regime, the aerodynamic response of the airfoil to vertical gusts displays a linear correlation with the flow angle near the leading edge. In the post-stall regime, the vertical gust induces dynamic stall of the airfoil. The flow angle has an essential effect on the lift coefficient but it alone is inadequate to dictate the trend of the lift coefficient. The vorticity statistics show that negative vortex circulation strongly correlates with the lift coefficient. Thus, further correction of the theory or a new vortex model can be expected to predict the lift variation.
Organo-montmorillonite (OMnt) has wide applications in paints, clay-polymer nanocomposites, biomaterials, etc. In most cases, the dispersibility and swellability of OMnt dictate the performance of OMnt in the target products. Previous studies have revealed that the properties can be improved when multiple organic species are co-introduced into the interlayer space of montmorillonite (Mnt). In the present study, single surfactant erucylamide (EA), dual-surfactants cetyltrimethyl ammonium bromide (CTAB) and octadecyltrimethyl ammonium chloride (OTAC), and ternary-surfactants EA, CTAB, and OTAC were co-introduced into Mnt by solution intercalation. The resulting OMnts were characterized by powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetry-differential thermogravimetry (TG-DTG), water contact-angle tests, scanning electronic microscopy (SEM), laser particle-size analysis, and swelling indices. Mnt co-modified by ternary CTAB, OTAC, and EA led to a large d001 value (4.20 nm), surface hydrophobicity with a contact angle of 95.6°, swellability (50 mL/g) with small average particle sizes (2.1−2.8 μm) in xylene, and >99% of the OMnt particles were kept as <5 μm in deionized water. The formation of EA-modified-Mnt was proposed according to hydrophobic affinity, hydrogen bonding, and van der Waals forces. The nanoplatelets of the CTA+, OTA+, and EA co-modified OMnts in xylene were assembled into a house-of-cards structure by face-to-edge and edge-to-edge associations. The electrostatic attractions, electrostatic and steric repulsions, and hydrophobic interactions were responsible for the good dispersibility of OMnt in xylene. The ternary surfactant co-modified OMnt with high dispersion and swellability will make OMnt better suited for real-world applications.
Montmorillonite (Mnt)-based solid acids have a wide range of applications in catalysis and adsorption of pollutants. For such solid acids, the acidic characteristic often plays a significant role in these applications. The objective of the current study was to examine the effects of H3PO4-activation and supporting WO3 on the textural structure and surface acidic properties of Mnt. The Mnt-based solid acid materials were prepared by H3PO4 treatment and an impregnation method with a solution of ammonium metatungstate (AMT) and were examined as catalysts in the dehydration of glycerol to acrolein. The catalysts were characterized by nitrogen adsorption-desorption, powder X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultraviolet-visible (DR UV-Vis) spectroscopy, temperature programmed desorption of NH3 (NH3-TPD), diffuse reflectance Fourier-transform infrared (DR FTIR) spectroscopy of adsorbed pyridine, and thermogravimetric (TG) analyses. The phosphoric acid treatment of Mnt created Brönsted and Lewis acid sites and led to increases in specific surface areas, porosity, and acidity. WO3 species influenced total acidity, acid strength, the numbers of Brönsted and Lewis acid sites, and catalytic performances. A high turnover frequency (TOF) value (31.2 h−1) based on a maximal 60.7% yield of acrolein was reached. The correlation of acrolein yield with acidic properties indicated that the cooperative role of Brönsted and Lewis acid sites was beneficial to the formation of acrolein and a little coke deposition (<3.3 wt.%). This work provides a new idea for the design of solid acid catalysts with cooperative Brönsted and Lewis acidity for the dehydration of glycerol.
Rodents and shrews are major reservoirs of various pathogens that are related to zoonotic infectious diseases. The purpose of this study was to investigate co-infections of zoonotic pathogens in rodents and shrews trapped in four provinces of China. We sampled different rodent and shrew communities within and around human settlements in four provinces of China and characterised several important zoonotic viral, bacterial, and parasitic pathogens by PCR methods and phylogenetic analysis. A total of 864 rodents and shrews belonging to 24 and 13 species from RODENTIA and EULIPOTYPHLA orders were captured, respectively. For viral pathogens, two species of hantavirus (Hantaan orthohantavirus and Caobang orthohantavirus) were identified in 3.47% of rodents and shrews. The overall prevalence of Bartonella spp., Anaplasmataceae, Babesia spp., Leptospira spp., Spotted fever group Rickettsiae, Borrelia spp., and Coxiella burnetii were 31.25%, 8.91%, 4.17%, 3.94%, 3.59%, 3.47%, and 0.58%, respectively. Furthermore, the highest co-infection status of three pathogens was observed among Bartonella spp., Leptospira spp., and Anaplasmataceae with a co-infection rate of 0.46%. Our results suggested that species distribution and co-infections of zoonotic pathogens were prevalent in rodents and shrews, highlighting the necessity of active surveillance for zoonotic pathogens in wild mammals in wider regions.
In this work, we present a high-power, high-repetition-rate, all-fiber femtosecond laser system operating at 1.5 $\unicode{x3bc}$m. This all-fiber laser system can deliver femtosecond pulses at a fundamental repetition rate of 10.6 GHz with an average output power of 106.4 W – the highest average power reported so far from an all-fiber femtosecond laser at 1.5 $\unicode{x3bc}$m, to the best of our knowledge. By utilizing the soliton-effect-based pulse compression effect with optimized pre-chirping dispersion, the amplified pulses are compressed to 239 fs in an all-fiber configuration. Empowered by such a high-power ultrafast fiber laser system, we further explore the nonlinear interaction among transverse modes LP01, LP11 and LP21 that are expected to potentially exist in fiber laser systems using large-mode-area fibers. The intermodal modulational instability is theoretically investigated and subsequently identified in our experiments. Such a high-power all-fiber ultrafast laser without bulky free-space optics is anticipated to be a promising laser source for applications that specifically require compact and robust operation.
The Viséan–Serpukhovian boundary is poorly defined in South China, hampering regional and global stratigraphical correlations. The foraminiferal and conodont distribution of the Baping Formation in the carbonate-slope Danlu section permits the recognition of an interval from the middle Viséan to the uppermost Serpukhovian in a continuous succession. The base of the Serpukhovian in Danlu is recognized by the first occurrences of Janischewskina delicata, Howchinia subplana and questionable ‘Millerella’ tortula. At a slightly younger level, the conodont Lochriea ziegleri is first recorded. A calibration on the first occurrence of L. ziegleri in different basins at a global scale has been revised compared to auxiliary markers within the ammonoids and foraminifers. The late occurrence of L. ziegleri in the Danlu section also supports a lack of synchronicity in the global first occurrence of this taxon. This study calls for the recognition of a new base for the Serpukhovian under a far better correlation between different zonal schemes and fossil groups.
We report here the first hundred-watt continuouswave fiber gas laser in H2-filled hollow-core photonic crystal fiber (PCF) by stimulated Raman scattering. The pump source is a homemade narrow-linewidth fiber oscillator with a 3 dB linewidth of 0.15 nm at the maximum output power of 380 W. To efficiently and stably couple several-hundred-watt pump power into the hollow core and seal the gas, a hollow-core fiber end-cap is fabricated and used at the input end. A maximum power of 110 W at 1153 nm is obtained in a 5 m long hollow-core PCF filled with 36 bar H2, and the conversion efficiency of the first Stokes power is around 48.9%. This work paves the way for high-power fiber gas Raman lasers.
The spatial structure and time evolution of tornado-like vortices in a three-dimensional cavity are studied by topological analysis and numerical simulation. The topology theory of the unsteady vortex in the rectangular coordinate system (Zhang, Zhang & Shu, J. Fluid Mech., vol. 639, 2009, pp. 343–372) is generalized to the curvilinear coordinate system. Two functions $\lambda (q_1,t)$ and $q(q_1,t)$ are obtained to determine the topology structure of the sectional streamline pattern in the cross-section perpendicular to the vortex axis and the meridional plane, respectively. The spiral direction of the sectional streamlines in the cross-section perpendicular to the vortex axis depends on the sign of $\lambda (q_1,t)$. The types of critical points in the meridional plane depend on the sign of $q(q_1,t)$. The relation between the critical points of the streamline pattern in the meridional plane and that in the cross-section perpendicular to the vortex axis is set up. The flow in a three-dimensional rectangular cavity is numerically simulated by solving the three-dimensional Navier–Stokes equations using high-order numerical methods. The spatial structures and the time evolutions of the tornado-like vortices in the cavity are analysed with our topology theory. Both the bubble type and spiral type of vortex breakdown are observed. They have a close relationship with the vortex structure in the cross-section perpendicular to the vortex axis. The bubble-type breakdown has a conical core and the core is non-axisymmetric in the sense of topology. A criterion for the bubble type and the spiral type based on the spatial structure characteristic of the two breakdown types is provided.
Instrument delivery is critical part in vascular intervention surgery. Due to the soft-body structure of instruments, the relationship between manipulation commands and instrument motion is non-linear, making instrument delivery challenging and time-consuming. Reinforcement learning has the potential to learn manipulation skills and automate instrument delivery with enhanced success rates and reduced workload of physicians. However, due to the sample inefficiency when using high-dimensional images, existing reinforcement learning algorithms are limited on realistic vascular robotic systems. To alleviate this problem, this paper proposes discrete soft actor-critic with auto-encoder (DSAC-AE) that augments SAC-discrete with an auxiliary reconstruction task. The algorithm is applied with distributed sample collection and parameter update in a robot-assisted preclinical environment. Experimental results indicate that guidewire delivery can be automatically implemented after 50k sampling steps in less than 15 h, demonstrating the proposed algorithm has the great potential to learn manipulation skill for vascular robotic systems.
In the United States, cardiovascular disease is the leading cause of death and the rate of maternal mortality remains among the highest of any industrialized nation. Maternal cardiometabolic health throughout gestation and postpartum is representative of placental health and physiology. Both proper placental functionality and placental microRNA expression are essential to successful pregnancy outcomes, and both are highly sensitive to genetic and environmental sources of variation. Placental pathologies, such as preeclampsia, are associated with maternal cardiovascular health but may also contribute to the developmental programming of chronic disease in offspring. However, the role of more subtle alterations to placental function and microRNA expression in this developmental programming remains poorly understood. We performed small RNA sequencing to investigate microRNA in placentae from the Rhode Island Child Health Study (n = 230). MicroRNA counts were modeled on maternal family history of cardiovascular disease using negative binomial generalized linear models. MicroRNAs were considered to be differentially expressed at a false discovery rate (FDR) less than 0.10. Parallel mRNA sequencing data and bioinformatic target prediction software were then used to identify potential mRNA targets of differentially expressed microRNAs. Nine differentially expressed microRNAs were identified (FDR < 0.1). Bioinformatic target prediction revealed 66 potential mRNA targets of these microRNAs, many of which are implicated in TGFβ signaling pathway but also in pathways involving cellular metabolism and immunomodulation. A robust association exists between familial cardiovascular disease and placental microRNA expression which may be implicated in both placental insufficiencies and the developmental programming of chronic disease.
To improve Antarctic sea-ice simulations and estimations, an ensemble-based Data Assimilation System for the Southern Ocean (DASSO) was developed based on a regional sea ice–ocean coupled model, which assimilates sea-ice thickness (SIT) together with sea-ice concentration (SIC) derived from satellites. To validate the performance of DASSO, experiments were conducted from 15 April to 14 October 2016. Generally, assimilating SIC and SIT can suppress the overestimation of sea ice in the model-free run. Besides considering uncertainties in the operational atmospheric forcing data, a covariance inflation procedure in data assimilation further improves the simulation of Antarctic sea ice, especially SIT. The results demonstrate the effectiveness of assimilating sea-ice observations in reconstructing the state of Antarctic sea ice, but also highlight the necessity of more reasonable error estimation for the background as well as the observation.
We report an experimental study of the Prandtl-number effects in quasi-two-dimensional (quasi-2-D) Rayleigh–Bénard convection. The experiments were conducted in four rectangular convection cells over the Prandtl-number range of $11.7 \leqslant Pr \leqslant 650.7$ and over the Rayleigh-number range of $6.0\times 10^8 \leqslant Ra \leqslant 3.0\times 10^{10}$. Flow visualization reveals that, as $Pr$ increases from 11.7 to 145.7, thermal plumes pass through the central region much less frequently and their self-organized large-scale motion is more confined along the periphery of the convection cell. The large-scale flow is found to break down for higher $Pr$, resulting in a regime transition in the Reynolds number $Re$. For the $Pr$ range with a large-scale flow of system size, the $Re$ number, Nusselt number $Nu$ and local temperature fluctuations were investigated systematically. It is found that $Re$ scales as $Re \sim Ra^{0.58}Pr^{-0.82}$ in the present geometry, which suggests that it is in line with the behaviour in the 2-D configuration. On the other hand, the measured $Nu(Ra, Pr)$ relation $Nu \sim Ra^{0.289}Pr^{-0.02}$ tends to be compatible with the finding in a three-dimensional (3-D) system. For the temperature fluctuations in the cell centre and near the sidewall, they exhibit distinct $Ra$-dependent scalings that could not be accounted for with existing theories, but their $Pr$ dependences for $Pr \lesssim 50$ are in agreement with the predictions by Grossmann & Lohse (Phys. Fluids, vol. 16, 2004, pp. 4462–4472). These results enrich our understanding of quasi-2-D thermal convection, and its similarities and differences compared to 2-D and 3-D systems.
The dependence of fishbone cycle on energetic particle intensity has been investigated in EAST low-magnetic-shear plasmas. It is observed that the fishbone mode growth rate, saturation amplitude as well as fishbone cycle frequency clearly increase with increasing neutral beam injection (NBI) power. Moreover, enhanced electron density and temperature perturbations as well as energetic particle loss were observed with greater injected NBI power. Simulation results using M3D-K code show that as the NBI power increases, the resonant frequency and the energy of the resonant particles become higher, and the saturation amplitude of the mode also changes, due to the non-perturbative energetic particle contribution. The relationship between the calculated energetic particle pressure ratio and fishbone cycle frequency is obtained as ${f_{\textrm{FC}}} = 2.2{(1000{\beta _{\textrm{ep,calc}}} - 0.1)^{5.9 \pm 0.5}}$. Results consistent with the experimental observations have been achieved based on a predator–prey model.
The surface spectral albedo was measured over coastal landfast sea ice in Prydz Bay (off Zhongshan Station), East Antarctica from 5 October to 26 November of 2016. The mean albedo decreased from late-spring to early-summer, mainly responding to the change in surface conditions from dry (phase I) to wet (phase II). The evolution of the albedo was strongly influenced by the surface conditions, with alternation of frequent snowfall events and katabatic wind that induce snow blowing at the surface. The two phases and day-to-day albedo variability were more pronounced in the near-infrared albedo wavelengths than in the visible ones, as the near-infrared photons are more sensitive to snow metamorphism, and to changes in the uppermost millimeters and water content of the surface. The albedo diurnal cycle during clear sky conditions was asymmetric with respect to noon, decreasing from morning to evening over full and patchy snow cover, and decreasing more rapidly in the morning over bare ice. We conclude that snow and ice metamorphism and surface melting dominated over the solar elevation angle dependency in shaping the albedo evolution. However, we realize that more detailed surface observations are needed to clarify and quantify the role of the various surface processes.
The ablation and acceleration of diamond-like high-density carbon foils irradiated by thermal X-ray radiations are investigated with radiation hydrodynamics simulations. The time-dependent front of the ablation wave is given numerically for radiation temperatures in the range of 100–300 eV. The mass ablation rates and ablation pressures can be derived or implied from the coordinates of ablation fronts, which agree well with reported experiment results of high-density carbon with radiation temperatures Trad in the range of 160–260 eV. It is also found that the $T_{{\rm rad}}^3$ scaling law for ablation rates does not apply to Trad above 260 eV. The trajectories of targets and hydrodynamic efficiencies for different target thicknesses can be derived from the coordinates of ablation fronts using a rocket model and the results agree well with simulations. The peak hydrodynamic efficiencies of the acceleration process are investigated for different foil thicknesses and radiation temperatures. Higher radiation temperatures and target thicknesses result in higher hydrodynamic efficiencies. The simulation results are useful for the design of fusion capsules.
A number of vision-based methods for detecting laser-induced defects on optical components have been implemented to replace the time-consuming manual inspection. While deep-learning-based methods have achieved state-of-the-art performances in many visual recognition tasks, their success often hinges on the availability of a large number of labeled training sets. In this paper, we propose a surface defect detection method based on image segmentation with a U-shaped convolutional network (U-Net). The designed network was trained on paired sets of online and offline images of optics from a large laser facility. We show in our experimental evaluation that our approach can accurately locate laser-induced defects on the optics in real time. The main advantage of the proposed method is that the network can be trained end to end on small samples, without the requirement for manual labeling or manual feature extraction. The approach can be applied to the daily inspection and maintenance of optical components in large laser facilities.