We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multimorbidity, especially physical–mental multimorbidity, is an emerging global health challenge. However, the characteristics and patterns of physical–mental multimorbidity based on the diagnosis of mental disorders in Chinese adults remain unclear.
Methods
A cross-sectional study was conducted from November 2004 to April 2005 among 13,358 adults (ages 18–65years) residing in Liaoning Province, China, to evaluate the occurrence of physical–mental multimorbidity. Mental disorders were assessed using the Composite International Diagnostic Interview (version 1.0) with reference to the Diagnostic and Statistical Manual of Mental Disorders (3rd Edition Revised), while physical diseases were self-reported. Physical–mental multimorbidity was assessed based on a list of 16 physical and mental morbidities with prevalence ≥1% and was defined as the presence of one mental disorder and one physical disease. The chi-square test was used to calculate differences in the prevalence and comorbidity of different diseases between the sexes. A matrix heat map was generated of the absolute number of comorbidities for each disease. To identify complex associations and potential disease clustering patterns, a network analysis was performed, constructing a network to explore the relationships within and between various mental disorders and physical diseases.
Results
Physical–mental multimorbidity was confirmed in 3.7% (498) of the participants, with a higher prevalence among women (4.2%, 282) than men (3.3%, 216). The top three diseases with the highest comorbidity rate and average number of comorbidities were dysphoric mood (86.3%; 2.86), social anxiety disorder (77.8%; 2.78) and major depressive disorder (77.1%; 2.53). A physical–mental multimorbidity network was visually divided into mental and physical domains. Additionally, four distinct multimorbidity patterns were identified: ‘Affective-addiction’, ‘Anxiety’, ‘Cardiometabolic’ and ‘Gastro-musculoskeletal-respiratory’, with the digestive-respiratory-musculoskeletal pattern being the most common among the total sample. The affective-addiction pattern was more prevalent in men and rural populations. The cardiometabolic pattern was more common in urban populations.
Conclusions
The physical–mental multimorbidity network structure and the four patterns identified in this study align with previous research, though we observed notable differences in the proportion of these patterns. These variations highlight the importance of tailored interventions that address specific multimorbidity patterns while maintaining broader applicability to diverse populations.
Aphis gossypii Glover (Hemiptera: Aphididae) is a significant pest of Capsicum annuum (Solanales: Solanaceae) and exhibits intraspecific differentiation within populations. To investigate the adaptability of Hap3 and Hap17 A. gossypii to various C. annuum varieties, including ‘Lvzhou101’ (LZ), ‘Lashen’ (LA), ‘Saierweilvtianjiao’ (SE), ‘Haimaihongri’ (HM), ‘Chaotianjiao’ (CT), and ‘Luosijiangjun’ (LS), we employed life tables to analyse growth and population parameters post-feeding and conducted petri dish host choice experiments to assess the host plant preference of A. gossypii. Survival rates of A. gossypii varied significantly across C. annuum varieties. Notably, Hap3 and Hap17 thrived on ‘LZ’ but failed to establish populations on ‘LA’. The net reproductive rate (R0), average generation time (T), and intrinsic rate of increase (rm) differed markedly between Hap3 and Hap17 across C. annuum varieties. Feeding on ‘LZ’ resulted in a significantly higher R0 value (26.49) for Hap3 relative to other varieties. The T (7.60 days) and rm (0.27) values for Hap3 on ‘SE’ were superior to those observed on other C. annuum varieties. These findings indicate that ‘SE’ is the optimal host for Hap3 growth, while ‘LZ’ best supports Hap17. Both haplotypes exhibited the lowest adaptability to ‘LA’. Therefore, the utilisation capacity of A. gossypii populations on C. annuum demonstrates differentiation, and the resistance levels among C. annuum varieties to A. gossypii vary. This differentiation can inform targeted management strategies for aphid infestations on pepper crops.
In this chapter, we showed the broader application of Polyhedral Graphic statistics in other fields of science and briefly introduced research directions and topics that go beyond the polyhedral limitations of this method. Particularly, we show a research project in which graphical methods were used to analyze the structural pattern of a dragonfly wing. The result was then combined with machine learning methods to generate the structure of a wing of an airplane with enhanced out-of-plane performance. We also visited applications in the design of strut-and-tie structures for referenced concrete and its further application in designing multi-material structural components where the direction of the deposition of material is adjusted with respect to the internal force flow to maximize mechanical performance. The application of Polyhedral Graphic Statics was shown in the design of cellular solids and briefly discussed how particular subdividing of the force diagram can control the stress distribution in the system and the overall behavior of the structure from bending dominant to stretching dominant system. We also showed the application of the structures designed using Polyhedral Graphic Statics in self-healing structural components and 3D-printed structural systems with maximized surface area and minimized mass. Another important topic was the extension of the methods of Polyhedral Graphic Statics to non-polyhedral systems using disjointed force polyhedra. In the end, advanced topics related to completeness, being, and kinematics in Polyhedral Graphic Statics were discussed, which opened the door to many further research directions in this field.
Parkinson’s disease (PD) diagnosis mostly relies on (late) clinical (parkinsonism) symptoms, whereas we need early diagnostic markers in order to initiate and monitor the effects of forthcoming disease-modifying drugs in the earliest phase of this disease. Therefore, reliable diagnostic and prognostic biomarkers are urgently needed. Evidence suggests the potential (differential) diagnostic and prognostic value of clinical, genetic, neuroimaging, and biochemical markers (e.g., in saliva, urine, blood and cerebrospinal fluid). Such biomarkers may include α-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, closely reflecting the pathophysiology of PD. Here, we provide an overview of these markers with practical guidelines for facilitating early PD diagnosis.
With the escalating laser peak power, modulating and detecting the intensity, duration, phase and polarization of ultra-intense laser pulses progressively becomes increasingly arduous due to the limited damage thresholds of conventional optical components. In particular, the generation and detection of ultra-intense vortex lasers pose great challenges for current laser technologies, which has limited the widely potential applications of relativistic vortex lasers in various domains. In this study, we propose to reconstruct the vortex phase and generate and amplify the relativistic vortex lasers via surface plasma holograms (SPHs). By interfering with the object laser and reference laser, SPHs are formed on the target and the phase of the interfering laser is imprinted through the modulation of surface plasma density. In particular, using the quadrature phase-shift interference, the vortex phase of the object laser can be well reconstructed. The generated vortex lasers can be focused and enhanced further by one order of magnitude, up to $1.7\times {10}^{21}$ W/cm${}^2$, which has been demonstrated by full three-dimensional particle-in-cell simulations. For the first time, we provide a practical way to detect the phase of relativistic vortex lasers, which can be applied in large 1–10 PW laser facilities. This will promote future experimental research of vortex-laser–plasma interaction and open a new avenue of plasma optics in the ultra-relativistic regime.
Laser-driven inertial confinement fusion (ICF) diagnostics play a crucial role in understanding the complex physical processes governing ICF and enabling ignition. During the ICF process, the interaction between the high-power laser and ablation material leads to the formation of a plasma critical surface, which reflects a significant portion of the driving laser, reducing the efficiency of laser energy conversion into implosive kinetic energy. Effective diagnostic methods for the critical surface remain elusive. In this work, we propose a novel optical diagnostic approach to investigate the plasma critical surface. This method has been experimentally validated, providing new insights into the critical surface morphology and dynamics. This advancement represents a significant step forward in ICF diagnostic capabilities, with the potential to inform strategies for enhancing the uniformity of the driving laser and target surface, ultimately improving the efficiency of converting laser energy into implosion kinetic energy and enabling ignition.
We developed a real-world evidence (RWE) based Markov model to project the 10-year cost of care for patients with depression from the public payer’s perspective to inform early policy and resource planning in Hong Kong.
Methods
The model considered treatment-resistant depression (TRD) and development of comorbidities along the disease course. The outcomes included costs for all-cause and psychiatric care. From our territory-wide electronic medical records, we identified 25,190 patients with newly diagnosed depression during the period from 2014 to 2016, with follow-up until December 2020 for real-world time-to-event patterns. Costs and time varying transition inputs were derived using negative binomial and parametric survival modeling. The model is available as a closed cohort, which studies a fixed cohort of incident patients, or an open cohort that introduces new patients every year. Utilities values and the number of incident cases per year were derived from published sources.
Results
There were 9,217 new patients with depression in 2023. Our closed cohort model projected that the cumulative cost of all-cause and psychiatric care for these patients would reach USD309 million and USD58 million by 2032, respectively. In our open cohort model, 55,849 to 57,896 active prevalent cases would cost more than USD322 million and USD61 million annually in all-cause and psychiatric care, respectively. Although less than 20 percent of patients would develop TRD or its associated comorbidities, they contribute 31 to 54 percent of the costs. The key cost drivers were the number of annual incident cases and the probability of developing TRD and associated comorbidities and of becoming a low-intensity service user. These factors are relevant to early disease stages.
Conclusions
A small proportion of patients with depression develop TRD, but they contribute to a high proportion of the care costs. Our projection also demonstrates the application of RWE to model the long-term costs of care, which can aid policymakers in anticipating foreseeable burden and undertaking budget planning to prepare for future care needs.
A high-energy pulsed vacuum ultraviolet (VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet (Nd:YAG) amplifier in a KBe2BO3F2 prism-coupled device was demonstrated. The ultraviolet (UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm. A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers. The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
Fiber Bragg grating-based Raman oscillators are capable of achieving targeted frequency conversion and brightness enhancement through the provision of gain via stimulated Raman scattering across a broad gain spectrum. This capability renders them an exemplary solution for the acquisition of high-brightness, specialized-wavelength lasers. Nonetheless, the output power of all-fiber Raman oscillators is typically limited to several hundred watts, primarily due to limitations in injectable pump power and the influence of higher-order Raman effects, which is inadequate for certain application demands. In this study, we introduce an innovative approach by employing a graded-index fiber with a core diameter of up to 150 μm as the Raman gain medium. This strategy not only enhances the injectable pump power but also mitigates higher-order Raman effects. Consequently, we have successfully attained an output power of 1780 W for the all-fiber Raman laser at 1130 nm, representing the highest output power in Raman fiber oscillators with any configuration reported to date.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated. The overall blastocyst formation and good-quality blastocyst rates in 1PN zygotes were 22.94 and 16.24%, significantly lower than those of 2PN zygotes (63.25 and 50.23%, respectively, P = 0.000). The pronuclear characteristics were found to be correlated with the developmental potential. When comparing 1PN zygotes that developed into blastocysts to those that arrested, the former exhibited a significantly larger area (749.49 ± 142.77 vs. 634.00 ± 119.05, P = 0.000), a longer diameter of pronuclear (29.81 ± 3.08 vs. 27.30 ± 3.00, P = 0.000), and a greater number of nucleolar precursor body (NPB) (11.56 ± 3.84 vs. 7.19 ± 2.73, P = 0.000). Among the tested embryos, the diploidy euploidy rate was significantly higher in blastocysts in comparison with the arrested embryos (66.67 vs. 11.76%, P = 0.000), which was also significantly higher in IVF-1PN blastocysts than in ICSI-1PN blastocysts (75.44 vs. 25.00%, P = 0.001). However, the pronuclear characteristics were not found to be linked to the chromosomal ploidy once they formed blastocysts.
In summary, while the developmental potential of 1PN zygotes is reduced, our study shows that, in addition to the reported pronuclear area and diameter, the number of NPB is also associated with their developmental potential. The 1PN blastocysts exhibit a high diploidy euploidy rate, are recommend to be clinically used post genetic testing, especially for patients who do not have other 2PN embryos available.
To characterize fluid flow in the slip regime, the use of Navier–Stokes–Fourier (NSF) equations with slip boundary conditions is prevalent. This trend underscores the necessity of developing reliable and accurate slip boundary conditions. According to kinetic theory, slip behaviours are intrinsically linked to the gas scattering processes at the surface. The widely used Maxwell scattering model, which employs a single accommodation coefficient to describe gas scattering processes, reveals its limitations when the difference between accommodation coefficients in the tangential and normal directions becomes significant. In this work, we provide a derivation of velocity slip and temperature jump boundary conditions based on the Cercignani–Lampis–Lord scattering model, which applies two independent accommodation coefficients to describe the gas scattering process. A Knudsen layer correction term is introduced to account for the impact of the surface on the velocity distribution function, which is associated with the scattering model. The governing equation of the correction term is established based on the linearized Boltzmann equation. Additionally, two moments are derived to capture the collision effect in the Knudsen layer: a conserving moment of collision invariants, and an approximate higher-order conserving moment. These moments are then employed to determine the coefficients in the correction term. We demonstrate that the derived slip coefficients align closely with numerical results obtained by solving the Boltzmann equation in the Knudsen layer. Besides, we apply the derived slip boundary conditions within the framework of the NSF equations, yielding numerical results that exhibit excellent consistency with those obtained through molecular-level simulations.
We aimed to evaluate the association of coffee consumption with different additives, including milk and/or sweetener (sugar and/or artificial sweetener), and different coffee types, with new-onset acute kidney injury (AKI), and examine the modifying effects of genetic variation in caffeine metabolism. 194 324 participants without AKI at baseline in the UK Biobank were included. The study outcome was new-onset AKI. During a median follow-up of 11·6 years, 5864 participants developed new-onset AKI. Compared with coffee non-consumers, a significantly lower risk of new-onset AKI was found in coffee consumers adding neither milk nor sugar to coffee (hazard ratio (HR), 0·86; 95 % CI, 0·78, 0·94) and adding only milk to coffee (HR,0·83; 95 % CI, 0·78, 0·89), but not in coffee consumers adding only sweetener (HR,1·14; 95 % CI, 0·99, 1·31) and both milk and sweetener to coffee (HR,0·96; 95 % CI, 0·89, 1·03). Moreover, there was a U-shaped association of coffee consumption with new-onset AKI, with the lowest risk at 2–3 drinks/d, in unsweetened coffee (no additives or milk only to coffee), but no association was found in sweetened coffee (sweetener only or both milk and sweetener to coffee). Genetic variation in caffeine metabolism did not significantly modify the association. A similar U-shaped association was found for instant, ground and decaffeinated coffee consumption in unsweetened coffee consumers, but not in sweetened coffee consumers. In conclusion, moderate consumption (2–3 drinks/d) of unsweetened coffee with or without milk was associated with a lower risk of new-onset AKI, irrespective of coffee type and genetic variation in caffeine metabolism.
Coronary artery lesions are the most severe complications of Kawasaki disease. Despite recent advances, evidence of the association between risk factors and coronary artery lesion is lacking. In this study, we demonstrated the potential clinical indicators that could assist to evaluate the prevalence of coronary artery lesion among paediatric patients with Kawasaki disease.
Methods:
We retrospectively enrolled 260 paediatric patients with Kawasaki disease. Patients with coronary dilation, coronary aneurysm, and intimal thickening of coronary arteries were included in this study. Medical records of each patient were collected. Logistic regression analysis was performed to explore risk factors and the occurrence of coronary artery lesion in patients with Kawasaki disease.
Results:
Respectively, 64 (24.6%), 39 (15%), and 56 patients (21.5%) of the participants had coronary dilation, coronary aneurysm, and intimal thickening of coronary arteries. Univariate analysis revealed that age, gender, duration of fever, time of initial use of intravenous immunoglobulin, erythrocyte sedimentation rate, white blood cell counts, time of platelet increase, the maximum value of platelet, albumin, and immunoglobulin G level was associated with coronary artery lesion. In multivariable logistic analysis, those younger and mainly males were associated with all three outcomes of coronary artery lesion, lower serum albumin levels, and later initial use of intravenous immunoglobulin were linked to a higher risk of coronary dilation and coronary aneurysm.
Conclusions:
The potential risk factors that could be used to estimate the occurrence of coronary artery lesion in Kawasaki disease patients are young age, male, lower serum albumin lever, and later initial use of intravenous immunoglobulin. However, long-term follow-up and multi-centre studies are required to verify our findings in the future.
Melting and solidification in periodically time-modulated thermal convection are relevant for numerous natural and engineering systems, for example, glacial melting under periodic sun radiation and latent thermal energy storage under periodically pulsating heating. It is highly relevant for the estimation of melt rate and melt efficiency management. However, even the dynamics of a solid–liquid interface shape subjected to a simple sinusoidal heating has not yet been investigated in detail. In this paper, we offer a better understanding of the modulation frequency dependence of the melting and solidification front. We numerically investigate periodic melting and solidification in turbulent convective flow with the solid above and the melted liquid below, and sinusoidal heating at the bottom plate with the mean temperature equal to the melting temperature. We investigate how the periodic heating can prevent the full solidification, and the resulting flow structures and the quasi-equilibrium interface height. We further study the dependence on the heating modulation frequency. As the frequency decreases, we found two distinct regimes, which are ‘partially solid’ and ‘fully solid’. In the fully solid regime, the liquid freezes completely, and the effect of the modulation is limited. In the partially solid regime, the solid partially melts, and a steady or unsteady solid–liquid interface forms depending on the frequency. The interface height can be derived based on the energy balance through the interface. In the partially solid regime, the interface height oscillates periodically, following the frequency of modulation. Here, we propose a perturbation approach that can predict the dependency of the oscillation amplitude on the modulation frequency.
An ultrasonic phased array system is introduced to study the three-dimensional (3-D) movement of a single bubble in a GaInSn alloy under a transverse magnetic field (MF), which is verified by bubble experiments in water. The 3-D motion trajectories of individual bubbles in the GaInSn are obtained under a horizontal MF. As the MF becomes stronger, the bubble successively oscillates in random directions (R mode), a direction perpendicular to the MF (V mode), a direction parallel to the MF (P mode) and finally it rises straight (S mode). The significant anisotropy of the oscillation directions at a moderate MF intensity may be due to the anisotropy of the vortex structure around the bubble. Furthermore, the oscillation amplitude gradually declines with increasing MF intensity until the bubble trajectory finally becomes a straight line. Our measurements allow us to specify the characteristic regions for the observed bubble modes in the $N-Eo-Re$ parameter space (N is the magnetic interaction parameter, Eo is the Eötvös number and Re is the Reynolds number). In addition, more detailed characteristics of bubble terminal velocity are revealed, showing that the bubble velocities are closely related to the motion modes. The increase in bubble velocity at a moderate MF intensity is caused by the weakening oscillation. At a high strength, the MF monotonically suppresses the rise velocity of the bubble with a fixed scaling law.
Euwallacea interjectus, a recently discovered pest in poplar plantations, poses a significant economic threat due to its role in causing widespread tree mortality. This pest's cryptic behaviour has hindered research and control efforts, making laboratory rearing a valuable tool for studying its development and biology. We investigated the development period and biological characteristics of E. interjectus using artificial diets and fungal medium. Our findings revealed that the development time for eggs, larvae, and pupae averages approximately 6, 18, and 6 days, respectively. Notably, first and second instar larvae displayed peak moulting periods at 3.45 ± 0.64 SD and 7.92 ± 1.77 SD days, respectively. Furthermore, we measured head capsule widths of postmolt larvae, yielding values of 318.02 ± 7.38 SD μm for first-instar larvae, 403.01 ± 11.08 SD μm for second-instar larvae, and 549.54 ± 20.74 SD μm for third-instar larvae. Our research also uncovered a positive correlation between the number of progeny (eggs, larvae, pupae, and adults) and the mean length of the gallery system. Interestingly, the haplodiploid reproductive strategy did not significantly affect the number of offspring produced by the foundress. Additionally, we observed that foundresses displayed higher fecundity when subjected to nutrient-rich diets as compared to nutrient-poor diets. Our results will deepen our understanding of the biology of E. interjectus and provide criteria for larval instar classification. Additionally, managing nutrient availability within the colony could be considered a viable approach to regulating population size.
Power scaling in conventional broad-area (BA) lasers often leads to the operation of higher-order lateral modes, resulting in a multiple-lobe far-field profile with large divergence. Here, we report an advanced sawtooth waveguide (ASW) structure integrated onto a wide ridge waveguide. It strategically enhances the loss difference between higher-order modes and the fundamental mode, thereby facilitating high-power narrow-beam emission. Both optical simulations and experimental results illustrate the significant increase in additional scattering loss of the higher-order modes. The optimized ASW lasers achieve an impressive output power of 1.1 W at 4.6 A at room temperature, accompanied by a minimal full width at half maximum lateral divergence angle of 4.91°. Notably, the far-field divergence is reduced from 19.61° to 11.39° at the saturation current, showcasing a remarkable 42% improvement compared to conventional BA lasers. Moreover, the current dependence of divergence has been effectively improved by 38%, further confirming the consistent and effective lateral mode control capability offered by our design.
Depression is a significant mental health concern affecting the overall well-being of adolescents and young adults. Recently, the prevalence of depression has increased among young people. Nonetheless, there is little research delving into the longitudinal epidemiology of adolescent depression over time.
Aims
To investigate the longitudinal epidemiology of depression among adolescents and young adults aged 10–24 years.
Method
Our research focused on young people (aged 10–24 years) with depression, using data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. We explored the age-standardised prevalence, incidence and disability-adjusted life-years (DALYs) of depression in different groups, including various regions, ages, genders and sociodemographic indices, from 1990 to 2019.
Results
The prevalence, incidence and DALYs of depression in young people increased globally between 1990 and 2019. Regionally, higher-income regions like High-Income North America and Australasia recorded rising age-standardised prevalence and incidence rates, whereas low- or middle-income regions mostly saw reductions. Nationally, countries such as Greenland, the USA and Palestine reported the highest age-standardised prevalence and incidence rates in 2019, whereas Qatar witnessed the largest growth over time. The burden disproportionately affected females across age groups and world regions. The most prominent age effect on incidence and prevalence rates was in those aged 20–24 years. The depression burden showed an unfavourable trend in younger cohorts born after 1980, with females reporting a higher cohort risk than males.
Conclusions
Between 1990 and 2019, the general pattern of depression among adolescents varied according to age, gender, time period and generational cohort, across regions and nations.