We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In contemporary neuroimaging studies, it has been observed that patients with major depressive disorder (MDD) exhibit aberrant spontaneous neural activity, commonly quantified through the amplitude of low-frequency fluctuations (ALFF). However, the substantial individual heterogeneity among patients poses a challenge to reaching a unified conclusion.
Methods
To address this variability, our study adopts a novel framework to parse individualized ALFF abnormalities. We hypothesize that individualized ALFF abnormalities can be portrayed as a unique linear combination of shared differential factors. Our study involved two large multi-center datasets, comprising 2424 patients with MDD and 2183 healthy controls. In patients, individualized ALFF abnormalities were derived through normative modeling and further deconstructed into differential factors using non-negative matrix factorization.
Results
Two positive and two negative factors were identified. These factors were closely linked to clinical characteristics and explained group-level ALFF abnormalities in the two datasets. Moreover, these factors exhibited distinct associations with the distribution of neurotransmitter receptors/transporters, transcriptional profiles of inflammation-related genes, and connectome-informed epicenters, underscoring their neurobiological relevance. Additionally, factor compositions facilitated the identification of four distinct depressive subtypes, each characterized by unique abnormal ALFF patterns and clinical features. Importantly, these findings were successfully replicated in another dataset with different acquisition equipment, protocols, preprocessing strategies, and medication statuses, validating their robustness and generalizability.
Conclusions
This research identifies shared differential factors underlying individual spontaneous neural activity abnormalities in MDD and contributes novel insights into the heterogeneity of spontaneous neural activity abnormalities in MDD.
In large-scale galaxy surveys, particularly deep ground-based photometric studies, galaxy blending was inevitable. Such blending posed a potential primary systematic uncertainty for upcoming surveys. Current deblenders predominantly depended on analytical modelling of galaxy profiles, facing limitations due to inflexible and imprecise models. We presented a novel approach, using a U-net structured transformer-based network for deblending astronomical images, which we term the CAT-deblender. It was trained using both RGB and the grz-band images, spanning two distinct data formats present in the Dark Energy Camera Legacy Survey (DECaLS) database, including galaxies with diverse morphologies in the training dataset. Our method necessitated only the approximate central coordinates of each target galaxy, sourced from galaxy detection, bypassing assumptions on neighbouring source counts. Post-deblending, our RGB images retained a high signal-to-noise peak, consistently showing superior structural similarity against ground truth. For multi-band images, the ellipticity of central galaxies and median reconstruction error for r-band consistently lie within $\pm$0.025 to $\pm$0.25, revealing minimal pixel residuals. In our comparison of deblending capabilities focused on flux recovery, our model showed a mere 1% error in magnitude recovery for quadruply blended galaxies, significantly outperforming SExtractor’s higher error rate of 4.8%. Furthermore, by cross-matching with the publicly accessible overlapping galaxy catalogs from the DECaLS database, we successfully deblended 433 overlapping galaxies. Moreover, we have demonstrated effective deblending of 63 733 blended galaxy images, randomly chosen from the DECaLS database.
A novel wideband nonuniform metasurface antenna with stable gain is demonstrated. The nonuniform metasurface is composed of square patches and rings and is excited by a slot antenna. Based on characteristic mode analysis, two characteristic modes with same current direction are selected to achieve stable radiation performance in a wide frequency range. The wideband operation is achieved by assembling the resonant modes of the metasurface and slot antenna. The measured results show that the −10 dB impedance bandwidth of the proposed antenna is from 4.3 to 8.4 GHz (64.57%), and the 2 dB gain bandwidth is from 4.3 to 6.2 GHz (36.2%) with a peak gain value of 9.42 dBi. Moreover, broadside radiation performance is achieved.
Dongchuanite, ideally Pb4VIZnIVZn2(PO4)2(PO4)2(OH)2, is a new phosphate mineral with a new type of structure. It was found at the Dongchuan copper mine, Yunnan Province, People's Republic of China. Dongchuanite generally occurs as spherical aggregates with microscopic lamellar crystals, characterised by a turquoise–greenish blue colour. It is transparent, with a colourless streak and has a vitreous lustre without fluorescence. It is brittle with a Mohs hardness of 2–2½, and has good parallel cleavage to {011}, with insignificant parting and even fracture. According to the empirical formula and cell volume, it has a calculated density of 6.06 g/cm3. It easily dissolves in acid without gas being emitted. The mineral is biaxial (–), calculated n = 1.90 and maximum birefringence: δ = 0.010 and 2V=70°. Dispersion of the optical axes r < v is very weak. The mineral is pale blue to light blue and very weakly pleochroic in transmitted light. Dongchuanite crystallises in the triclinic space group P$\bar{1}$, with unit-cell parameters a = 4.7620(10) Å, b = 8.5070(20) Å, c = 10.3641(19) Å, α = 97.110(17)°, β = 101.465(17)°, γ = 92.273(18)°, V = 407.44(15) Å3 and Z = 1. The eight strongest reflections in the powder X-ray diffraction pattern [dobs, Å (I/I0) (hkl)] are: 3.442 (100) ($\bar{1}$12), 3.035 (50) (120), 4.652 (45) (100), 2.923 (40) ($\bar{1}\bar{1}$3), 2.384 (35) ($\bar{2}$01), 3.130 (30) ($\bar{1}$21), 2.811 (30) (030) and 2.316 (18) (032). The crystal structure (solved and refined from single-crystal X-ray diffraction data, R1 = 0.07) is a new layered structure consisting of corner-sharing tetrahedrons and octahedrons, where [PO4] tetrahedra and [ZnO4] tetrahedra share corners to form a double chain, and the another [PO4] tetrahedra is connected by corner-sharing with a [ZnO4(OH)2] octahedra to form a tetrahedral–octahedral chain, extending along the a-axis direction. The two types of chains are connected by corner-sharing between [ZnO4] and [PO4] tetrahedra forming a wrinkled layer parallel to (011). The Pb atoms occupy two independent sites between the wrinkled layers, both of which have typical lopsided coordination of Pb2+ with stereoactive 6s2 lone-pair electrons.
Low molecular weight glutenin subunits (LWM-GSs) play a crucial role in determining wheat flour processing quality. In this work, 35 novel LMW-GS genes (32 active and three pseudogenes) from three Aegilops umbellulata (2n = 2x = 14, UU) accessions were amplified by allelic-specific PCR. We found that all LMW-GS genes had the same primary structure shared by other known LMW-GSs. Thirty-two active genes encode 31 typical LMW-m-type subunits. The MZ424050 possessed nine cysteine residues with an extra cysteine residue located in the last amino acid residue of the conserved C-terminal III, which could benefit the formation of larger glutenin polymers, and therefore may have positive effects on dough properties. We have found extensive variations which were mainly resulted from single-nucleotide polymorphisms (SNPs) and insertions and deletions (InDels) among the LMW-GS genes in Ae. umbellulata. Our results demonstrated that Ae. umbellulata is an important source of LMW-GS variants and the potential value of the novel LMW-GS alleles for wheat quality improvement.
The optimization of laser pulse shapes is of great importance and a major challenge for laser direct-drive implosions. In this paper, we propose an efficient intelligent method to perform laser pulse optimization via hydrodynamic simulations guided by the genetic algorithm and random forest algorithm. Compared to manual optimizations, the machine-learning guided method is able to efficiently improve the areal density by a factor of 63% and reduce the in-flight-aspect ratio by a factor of 30% at the same time. A relationship between the maximum areal density and ion temperature is also achieved by the analysis of the big simulation dataset. This design method has been successfully demonstrated by the 2021 summer double-cone ignition experiments conducted at the SG-II upgrade laser facility and has great prospects for the design of other inertial fusion experiments.
Understanding factors associated with post-discharge sleep quality among COVID-19 survivors is important for intervention development.
Aims
This study investigated sleep quality and its correlates among COVID-19 patients 6 months after their most recent hospital discharge.
Method
Healthcare providers at hospitals located in five different Chinese cities contacted adult COVID-19 patients discharged between 1 February and 30 March 2020. A total of 199 eligible patients provided verbal informed consent and completed the interview. Using score on the single-item Sleep Quality Scale as the dependent variable, multiple linear regression models were fitted.
Results
Among all participants, 10.1% reported terrible or poor sleep quality, and 26.6% reported fair sleep quality, 26.1% reported worse sleep quality when comparing their current status with the time before COVID-19, and 33.7% were bothered by a sleeping disorder in the past 2 weeks. After adjusting for significant background characteristics, factors associated with sleep quality included witnessing the suffering (adjusted B = −1.15, 95% CI = −1.70, −0.33) or death (adjusted B = −1.55, 95% CI = −2.62, −0.49) of other COVID-19 patients during hospital stay, depressive symptoms (adjusted B = −0.26, 95% CI = −0.31, −0.20), anxiety symptoms (adjusted B = −0.25, 95% CI = −0.33, −0.17), post-traumatic stress disorders (adjusted B = −0.16, 95% CI = −0.22, −0.10) and social support (adjusted B = 0.07, 95% CI = 0.04, 0.10).
Conclusions
COVID-19 survivors reported poor sleep quality. Interventions and support services to improve sleep quality should be provided to COVID-19 survivors during their hospital stay and after hospital discharge.
We investigate the dynamics of a self-rewetting drop placed on a substrate with a constant temperature gradient via three-dimensional numerical simulations using a conservative level-set approach to track the interface of the drop. The surface tension of a so-called self-rewetting fluid exhibits a parabolic dependence on temperature with a well-defined minimum. Two distinct drop behaviours, namely deformation and elongation, are observed when it is placed at the location of the minimum surface tension. The drop spreads slightly and reaches a pseudo-steady state in the deformation regime, while it continuously spreads until breakup in the elongation regime. Theoretical models based on the forces exerted on the drop have been developed to predict the critical condition at which the drop undergoes the transition between the two regimes, and the predictions are in good agreement with the numerical results. We also investigate the effect of the initial position of the drop with respect to the location of the minimum surface tension on the spreading and migration dynamics. It is found that, at early times, the migration of the drop obeys an exponential function with time, but it diverges at the later stage due to an increase in the drop deformation.
GBF1 [Golgi brefeldin A (BFA) resistance factor 1] is a member of the guanine nucleotide exchange factors Arf family. GBF1 localizes at the cis-Golgi and endoplasmic reticulum (ER)-Golgi intermediate compartment where it participates in ER-Golgi traffic by assisting in the recruitment of the coat protein COPI. However, the roles of GBF1 in oocyte meiotic maturation are still unknown. In the present study, we investigated the regulatory functions of GBF1 in mouse oocyte organelle dynamics. In our results, GBF1 was stably expressed during oocyte maturation, and GBF1 localized at the spindle periphery during metaphase I. Inhibiting GBF1 activity led to aberrant accumulation of the Golgi apparatus around the spindle. This may be due to the effects of GBF1 on the localization of GM130, as GBF1 co-localized with GM130 and inhibiting GBF1 induced condensation of GM130. Moreover, the loss of GBF1 activity affected the ER distribution and induced ER stress, as shown by increased GRP78 expression. Mitochondrial localization and functions were affected, as the mitochondrial membrane potential was altered. Taken together, these results suggest that GBF1 has wide-ranging effects on the distribution and functions of Golgi apparatus, ER, and mitochondria as well as normal polar body formation in mouse oocytes.
It can be challenging for a democratic government to effectively make policies that address crucial national problems. While a bulk of literature reports that many democracies have overcome this challenge through centralization of legislative organization, few studies have explained why legislative decentralization that allegedly impairs policymaking performance would take place. Drawing on Taiwan's experience and over 13,000 legislative bills proposed in Taiwan's parliament between 1993 and 2012, this article demonstrates that the legislative decentralization during the onset of Taiwan's democratization slightly revived the policymaking performance of a near-paralysed parliament. Like drinking poison to quench the thirst, myopic politicians may opt for legislative decentralization as an instant remedy to ease severe legislative obstruction, despite the unfavourable consequences that the resulting decentralized legislative organization may eventually bring about. These findings shed new light on the evolution of legislative organization and account for the difficulties in policymaking facing developing democracies.
Isolated congenital tricuspid regurgitation other than Ebstein’s anomaly was rare especially for children. The objective of this study was to investigate the clinical characteristics and to assess the results of tricuspid valvuloplasty for children with isolated tricuspid regurgitation.
Methods:
From January 2010 to June 2019, 10 consecutive patients with isolated tricuspid regurgitation who were unresponsive to drug therapy underwent tricuspid valvuloplasty in our hospital. Patients’ clinical data were analysed retrospectively.
Results:
Mean age at operation was 48.5 ± 31.0 (range: 9–106) months and mean weight at operation was 16.1 ± 6.9 (range: 8.6–33.0) kg. All patients presented severe isolated tricuspid regurgitation. According to pathological lesions, the main causes accounted for chordae tendinea rupture (3/10), leaflet cleft (2/10), mal-connected chordal tendinea to leaflets (2/10), elongated chordae (1/10) and chordae absent (1/10), and severe anterior leaflet dysplasia (1/10). Individualised tricuspid valvuloplasty was adapted to all of them successfully. Post-operative echocardiography showed no tricuspid regurgitation in two patients and mild regurgitation in eight patients. The cardiothoracic ratios on their chest roentgenograms decreased from 0.59 ± 0.05 to 0.54 ± 0.05. At the latest follow-up (50.4 ± 47.2 months), echocardiography showed that mild to moderate tricuspid regurgitation in seven patients, moderate tricuspid regurgitation in three patients, and no patient with severe tricuspid regurgitation. All patients were in NYHA functional class I.
Conclusions:
For patients with isolated tricuspid regurgitation who were not well responsive to drug therapy, individualised tricuspid valve repair can achieve an excellent result.
The COVID-19 outbreak required the significantly increased working time and intensity for health professionals in China, which may cause stress signs.
Methods.
From March 2–13 of 2020, 4,618 health professionals in China were included in an anonymous, self-rated online survey regarding their concerns on exposure to the COVID-19 outbreak. The questionnaires consisted of five parts: basic demographic information and epidemiological exposure; occupational and psychological impact; concerns during the episode; coping strategies; and the Huaxi Emotional-Distress Index (HEI).
Results.
About 24.2% of respondents experienced high levels of anxiety or/and depressive symptoms since the COVID-19 outbreak. Respondents who worried about their physical health and those who had COVID-19 infected friends or close relatives were more likely to have high HEI levels, than those without these characteristics. Further, family relationship was found to have an independent protective effect against high HEI levels. Their main concerns were that their families would not be cared for and that they would not be able to work properly. Compared to respondents with clear emotional problems, those with somewhat hidden emotional issues adopted more positive coping measures.
Conclusions.
About a quarter of medical staff experienced psychological problems during the pandemic of COVID-19. The psychological impact of stressful events was related to worrying about their physical health, having close COVID-19 infected acquaintances and family relationship issues. Therefore, the psychological supprot for medical staff fighting in the COVID-19 pandemic may be needed.
A nanoparticle-based drug delivery system is first established by mesoporous silica encapsulating amino acid–intercalated layered double hydroxide (LDH) to construct nanocomposites AA-LDH@MS. The amino acids including phenylalanine (Phe) and histidine (His) with aromatic groups are intercalated into LDH as the cores Phe-LDH and His-LDH. These nanocomposites AA-LDH@MS display multispaces of the interlayer spaces of LDH and porous channels of mesoporous silica to load drugs. Moreover, amino acid molecules provide the interaction sites to improve effectively loading amounts of drugs. 5-Fluorouracil (5-FU) is used as the cargo molecules to observe the delivery in vitro. The results indicate that the maximum loading amounts of drugs are up to 392 mg/g at 60 °C for 12 h in the nanocomposite Phe-LDH@MS. All the nanocomposites exhibit the sustained release of 5-FU at pH 4 and pH 7.4. The Korsmeyer–Peppas model is used to fit the kinetic plot of the drug release in vitro, which concludes that 5-FU release from AA-LDH@MS belongs to Fickian diffusion.
The star formation history (SFH) of galaxies allow us to investigate when galaxies formed their stars and assembled their mass. We can constrain the SFH with high level of precision from galaxies with resolved stellar populations, since we are able to discriminate between stars of different ages from the spectrum they emit. However, the relative importance of secular evolution (nature) over nurture is not yet clear, and separating the effects of interaction-driven evolution in the observed galaxy properties is not trivial. The aim of this study is to use MaNGA (Mapping Nearby Galaxies at APO) Integral Field Unit (IFU) data, in combination with multi-wavelength data, to constrain the SFH of nearby isolated galaxies. We present here the new techniques we are developing to constrain the SFH with high level of precision from Spectral Energy Distribution (SED) fitting. This study is part of a China-Chile collaboration program where we are applying these new techniques to investigate how galaxies formed and evolve in different environments.