We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Iron deficiency is associated with worse outcomes in children and adults with systolic heart failure. While oral iron replacement has been shown to be ineffective in adults with heart failure, its efficacy in children with heart failure is unknown. We hypothesised that oral iron would be ineffective in replenishing iron stores in ≥50% of children with heart failure.
Methods:
We performed a single-centre retrospective cohort study of patients aged ≤21 years with systolic heart failure and iron deficiency who received oral iron between 01/2013 and 04/2019. Iron deficiency was defined as ≥2 of the following: serum iron <50 mcg/dL, serum ferritin <20 ng/mL, transferrin >300 ng/mL, transferrin saturation <15%. Iron studies and haematologic indices pre- and post-iron therapy were compared using paired-samples Wilcoxon test.
Results:
Fifty-one children with systolic heart failure and iron deficiency (median age 11 years, 49% female) met inclusion criteria. Heart failure aetiologies included cardiomyopathy (51%), congenital heart disease (37%), and history of heart transplantation with graft dysfunction (12%). Median dose of oral iron therapy was 2.9 mg/kg/day of elemental iron, prescribed for a median duration of 96 days. Follow-up iron testing was available for 20 patients, of whom 55% (11/20) remained iron deficient despite oral iron therapy.
Conclusions:
This is the first report on the efficacy of oral iron therapy in children with heart failure. Over half of the children with heart failure did not respond to oral iron and remained iron deficient.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.