We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Previous studies investigating the effectiveness of augmentation therapy have been limited.
Aims
To evaluate the effectiveness of antipsychotic augmentation therapies among patients with treatment-resistant depression.
Method
We included patients diagnosed with depression receiving two antidepressant courses within 1 year between 2009 and 2020 and used the clone-censor-weight approach to address time-lag bias. Participants were assigned to either an antipsychotic or a third-line antidepressant. Primary outcomes were suicide attempt and suicide death. Cardiovascular death and all-cause mortality were considered as safety outcomes. Weighted pooled logistic regression and non-parametric bootstrapping were used to estimate approximate hazard ratios and 95% confidence intervals.
Results
The cohort included 39 949 patients receiving antipsychotics and the same number of matched antidepressant patients. The mean age was 51.2 (standard deviation 16.0) years, and 37.3% of participants were male. Compared with patients who received third-line antidepressants, those receiving antipsychotics had reduced risk of suicide attempt (sub-distribution hazard ratio 0.77; 95% CI 0.72–0.83) but not suicide death (adjusted hazard ratio 1.08; 95% CI 0.93–1.27). After applying the clone-censor-weight approach, there was no association between antipsychotic augmentation and reduced risk of suicide attempt (hazard ratio 1.06; 95% CI 0.89–1.29) or suicide death (hazard ratio 1.22; 95% CI 0.91–1.71). However, antipsychotic users had increased risk of all-cause mortality (hazard ratio 1.21; 95% CI 1.07–1.33).
Conclusions
Antipsychotic augmentation was not associated with reduced risk of suicide-related outcomes when time-lag bias was addressed; however, it was associated with increased all-cause mortality. These findings do not support the use of antipsychotic augmentation in patients with treatment-resistant depression.
As a required sample preparation method for 14C graphite, the Zn-Fe reduction method has been widely used in various laboratories. However, there is still insufficient research to improve the efficiency of graphite synthesis, reduce modern carbon contamination, and test other condition methodologies at Guangxi Normal University (GXNU). In this work, the experimental parameters, such as the reduction temperature, reaction time, reagent dose, Fe powder pretreatment, and other factors, in the Zn-Fe flame sealing reduction method for 14C graphite samples were explored and determined. The background induced by the sample preparation process was (2.06 ± 0.55) × 10–15, while the 12C– beam current were better than 40μA. The results provide essential instructions for preparing 14C graphite of ∼1 mg at the GXNU lab and technical support for the development of 14C dating and tracing, contributing to biology and environmental science.
A new vacuum line to extract CO2 from carbonate and dissolved inorganic carbon (DIC) in water was established at Guangxi Normal University. The vacuum line consisted of two main components: a CO2 bubble circulation region and a CO2 purification collection region, both of which were made of quartz glass and metal pipelines. To validate its reliability, a series of carbonate samples were prepared using this system. The total recovery rate of CO2 extraction and graphitization exceeded 80%. Furthermore, the carbon content in calcium carbonate exhibited a linear relationship with the CO2 pressure within the system, demonstrating its stability and reliability. The system was also employed to prepare and analyze various samples, including calcium carbonate blanks, foraminiferal, shell, groundwater, and subsurface oil-water samples. The accelerator mass spectrometry (AMS) results indicated that the average beam current for 12C- in the samples exceeded 40 μA. Additionally, the contamination introduced during the liquid sample preparation process was approximately (1.77 ± 0.57) × 10−14. Overall, the graphitized preparation system for carbonate and DIC in water exhibited high efficiency and recovery, meeting the requirements for samples dating back to approximately 30,000 years.
Genes involved in melanin production directly impact insect pigmentation and can affect diverse physiology and behaviours. The role these genes have on sex behaviour, however, is unclear. In the present study, the crucial melanin pigment gene black was functionally characterised in an urban pest, the German cockroach, Blattella germanica. RNAi knockdown of B. germanica black (Bgblack) had no effect on survival, but did result in black pigmentation of the thoraxes, abdomens, heads, wings, legs, antennae, and cerci due to cuticular accumulation of melanin. Sex-specific variation in the pigmentation pattern was apparent, with females exhibiting darker coloration on the abdomen and thorax than males. Bgblack knockdown also resulted in wing deformation and negatively impacted the contact sex pheromone-based courtship behaviour of males. This study provides evidence for black function in multiple aspects of B. germanica biology and opens new avenues of exploration for novel pest control strategies.
The production and industrial use of asbestos cement and other asbestos-containing materials have been restricted in most countries because of the potential detrimental effects on human health and the environment. Chrysotile is the most common form of asbestos and investigations into how to recycle this serpentine phyllosilicate mineral have attracted extensive attention. Chrysotile asbestos tailings can be transformed thermally, at high temperature, by in situ carbothermal reduction (CR). The CR method aims to maximize use of the chrysotile available and uses high temperatures and carbon to change the mineral form and structure of the chrysotile asbestos tailings. When chrysotile asbestos is employed as the raw material and coke (carbon) powder is used as the reducing agent for CR transformation, stable, high-temperature composites consisting of forsterite, stishovite, and silicon carbide are formed. Forsterite (Mg2SiO4) was the most abundant crystalline phase formed in samples heat treated below 1500ºC. At 1600ºC, forsterite was exhausted through decomposition and β-SiC formed by reduction of stishovite. A larger proportion of β-SiC was generated as the carbon content was increased. This research revealed that both temperature and carbon addition play key roles in the transformation of chrysotile asbestos tailings.
The efficient separation of hexane isomers from the light naphtha fraction is a significant challenge in the petrochemical industry. 5A zeolite adsorbent is used commercially to sieve alkane isomers. In this study, 5A zeolites were synthesized using a low-cost natural clay mineral precursor, i.e. palygorskite (PAL), with the addition of crystallization directing agent (CDA). By varying the mass ratio of CDA/deionized water, 5A zeolites were obtained as CDA-5%, CDA-7.5%, and CDA-10%. All products were submicron particles with an average particle size of 400–800 nm. A sieving test of CDA-induced 5A zeolites was carried out on hexane adsorbates including n-hexane (nHEX), 2-methylpentane (2MP), and 3-methylpentane (3MP). According to vapor-phase batch adsorption experiments, a significant equilibrium amount (0.149 g/g) of nHEX and only 0.0321 g/g 2MP and 0.0416 g/g 3MP were adsorbed on the 5A zeolite product with CDA-5%. The dynamic adsorption performance of 5A zeolite (CDA-5%) was evaluated by breakthrough curves of binary mixtures of nHEX/2MP and nHEX/3MP. Palygorskite 5A (PAL 5A) zeolite achieved maximum dynamic adsorption capacities of nHEX (0.16 g/g in both cases) at 200°C and 1.2 MPa total pressure. This work provided an economic alternative for the synthesis of 5A zeolites using natural clay minerals instead of chemical raw materials.
Compared with nitrogen and argon, helium is lighter and can better reduce the beam loss caused by angular scattering during beam transmission. The molecular dissociation cross-section in helium is high and stable at low energies, which makes helium the prevalent stripping gas in low-energy accelerator mass spectrometry (AMS). To study the stripping behavior of 14C ions in helium at low energies, the charge state distributions of carbon ion beams with −1, +1, +2, +3, and +4 charge states were measured at energies of 70–220 keV with a compact 14C-AMS at Guangxi Normal University (GXNU). The experimental data were used to analyze the stripping characteristics of C-He in the energy range of 70–220 keV, and new charge state yields and exchange cross-sections in C-He were obtained at energies of 70–220 keV.
We investigate numerically the spreading dynamics of a bubble coming into contact with a smooth solid substrate in a viscous liquid. The substrate is partially wettable, and the singularity of the moving contact line is relieved by adopting the Navier-slip model. The Stokes equations are solved by employing a boundary element method coupled with adaptive mesh refinement. This allows us to realize sufficiently small slip lengths down to $O(10^{-5})$ in dimensionless form, which is crucial to resolve the local interface structures at the early stage of spreading. The results show that the early-stage spreading of the bubble is always characterized by the growth and propulsion of a dewetting liquid rim close to the contact line, while the macroscopic interface remains unchanged. The evolution of the contact line and the morphology of the rim depends on the wettability and the slip length, and a parametric investigation is performed. Based on mass conservation, a relation between the rim size and the spreading radius is established. We also propose an analytical prediction of the temporal variation in the contact line radius at the early stage of spreading, which is found to follow a logarithmically corrected linear relation rather than a pure power law. Moreover, the early stages of bubble spreading are qualitatively similar for two-dimensional and axisymmetric configurations.
A single-stage accelerator mass spectrometer (GXNU-AMS) developed for radiocarbon and tritium measurements was installed and commissioned at Guangxi Normal University in 2017. After several years of operational and methodological upgrades, its performance has been continuously improved and applied in multidisciplinary fields. Currently, the measurement sensitivity for radiocarbon and tritium is 14C/12C ∼ (3.14 ± 0.05) ×10–15 and 3H/1H ∼ (1.23 ± 0.17)×10–16, respectively, and the measurement accuracy is ∼0.6%, which can meet the measurement requirements in the nuclear, earth, environmental and life science fields. This study presents the performance characteristics of GXNU-AMS and several interesting application studies.
Although ethanol treatment is widely used to activate oocytes, the underlying mechanisms are largely unclear. Roles of intracellular calcium stores and extracellular calcium in ethanol-induced activation (EIA) of oocytes remain to be verified, and whether calcium-sensing receptor (CaSR) is involved in EIA is unknown. This study showed that calcium-free ageing (CFA) in vitro significantly decreased intracellular stored calcium (sCa) and CaSR expression, and impaired EIA, spindle/chromosome morphology and developmental potential of mouse oocytes. Although EIA in oocytes with full sCa after ageing with calcium does not require calcium influx, calcium influx is essential for EIA of oocytes with reduced sCa after CFA. Furthermore, the extremely low EIA rate in oocytes with CFA-downregulated CaSR expression and the fact that inhibiting CaSR significantly decreased the EIA of oocytes with a full complement of CaSR suggest that CaSR played a significant role in the EIA of ageing oocytes. In conclusion, CFA impaired EIA and the developmental potential of mouse oocytes by decreasing sCa and downregulating CaSR expression. Because mouse oocytes routinely treated for activation (18 h post hCG) are equipped with a full sCa complement and CaSR, the present results suggest that, while calcium influx is not essential, CaSR is required for the EIA of oocytes.
In this paper, we study the local receptivity of the inviscid Mack modes in hypersonic boundary layers induced by the interaction between a surface heating or cooling source (HCS) and a freestream acoustic wave. The asymptotic analysis reveals that among the three distinguished layers, i.e. the main, wall and Stokes layers, the leading-order receptivity is attributed to the interaction of the HCS-induced mean-flow distortion and the acoustic signature in the wall layer; the second-order contribution appears in the Stokes layer; the third-order contribution appears in both the main and wall layers. Interestingly, at a moderate Reynolds number, the third-order contribution to the receptivity efficiency may be quantitatively greater than the second-order one, but this does not lead to breakdown of this asymptotic theory. Assuming the HCS intensity to be sufficiently weak, the asymptotic predictions are made for four representative cases involving different Mach numbers and wall temperatures, which are compared with the results obtained by the finite-Reynolds-number theory based on either the extended compressible Orr–Sommerfeld equations or the harmonic linearised Navier–Stokes (HLNS) calculations. Taking into account the first three orders of the receptivity efficiency, the asymptotic predictions are confirmed to be sufficiently accurate even when the Reynolds number is a few thousands, and the agreement with the finite-Reynolds-number calculations is better when the wall temperature of the base flow approaches the adiabatic wall temperature. The HLNS calculations are also conducted for moderate HCS intensities. It is found that the nonlinearity does not affect the receptivity coefficient much even when the temperature distortion of the HCS reaches $80\,\%$ of the temperature at the wall.
This paper presents systematic molecular dynamics modelling of Na-montmorillonite subjected to uniaxial compression and unidirectional shearing. An initial 3D model of a single-cell Na-montmorillonite structure is established using the Build Crystal module. The space group is C2/m, and COMPASS force fields are applied. Hydration analysis of Na-montmorillonite has been performed to validate the simulation procedures, where the number of absorbed water molecules varied with respect to the various lattice parameters. A series of uniaxial compression stress σzz and unidirectional shear stress τxy values are applied to the Na-montmorillonite structure. It is shown that the lattice parameter and hydration degree exhibit significant influence on the stress–strain relationship of Na-montmorillonite. The ultimate strain increases with increases in the lattice parameter but decreases in the number of water molecules. For saturated Na-montmorillonite, more water molecules result in a stiffer clay mineral under uniaxial compression and unidirectional shearing.
Intertemporal choices involve tradeoffs between outcomes that occur at different times. Most of the research has used pure gains tasks and the discount rates yielding from those tasks to explain and predict real-world behaviors and consequences. However, real decisions are often more complex and involve mixed outcomes (e.g., sooner-gain and later-loss or sooner-loss and later-gain). No study has used mixed gain-loss intertemporal tradeoff tasks to explain and predict real-world behaviors and consequences, and studies involving such tasks are also scarce. Considering that tasks involving a combination of gains and losses may yield different discount rates and that existing pure gains tasks do not explain or predict real-world outcomes well, this study conducted two experiments to compare the discount rates of mixed gain-loss intertemporal tradeoffs with those of pure gains or pure losses (Experiment 1) and to examine whether these tasks predicted different real-world behaviors and consequences (Experiment 2). Experiment 1 suggests that the discount rate ordering of the four tasks was, from highest to lowest, pure gains, sooner-loss and later-gain, pure losses, and sooner-gain and later-loss. Experiment 2 indicates that the evidence supporting the claim that the discount rates of the four tasks were related to different real-world behaviors and consequences was insufficient.
A new system for preparing 14C samples was established for a compact accelerator mass spectrometer (GXNU-AMS) at Guangxi Normal University. This sample preparation system consists of three units: a vacuum maintenance unit, a CO2 purification unit, and a CO2 reduction unit, all of which were made of quartz glass. A series of radiocarbon (14C) preparation experiments were conducted to verify the reliability of the system. The recovery rate of graphite obtained was more than 80%. The carbon content in the commercial toner and wood sample was linearly fitted to the CO2 pressure in the measurement unit of the system. The results showed a good linear relationship, indicating that the reliability of the sample preparation system. AMS measurements were conducted on a batch of standard, wood, and dead graphite samples prepared using this system. The results showed that the beam current of 12C- for each sample was more than 40 μA, the carbon contamination introduced during the sample preparation process was ∼ 2 × 10–15, and that the new sample preparation system is compact, low-contamination, and efficient and meets the GXNU-AMS requirements for 14C samples.
Many waterflooding oil fields, injecting water into an oil-bearing reservoir for pressure maintenance, are in their middle to late stages of development. To explore the geological conditions and improve oilfield recovery of the most important well group of the Hu 136 block, located on the border areas of three provinces (Henan, Shandong, and Hebei), Zhongyuan Oilfield, Sinopec, central China, a 14C cross-well tracer monitoring technology was developed and applied in monitoring the development status and recognize the heterogeneity of oil reservoirs. The tracer response in the production well was tracked, and the water drive speed, swept volume of the injection fluid were obtained. Finally, the reservoir heterogeneity characteristics, such as the dilution coefficient, porosity, permeability, and average pore-throat radius, were fitted according to the mathematical model of the heterogeneous multi-layer inter-well theory. The 14C-AMS technique developed in this work is expected to be a potential analytical method for evaluating underground reservoir characteristics and providing crucial scientific guidance for the mid to late oil field recovery process.
There is increasing attention on the association of socioeconomic status and individual behaviors (SES/IB) with mental health. However, the impacts of SES/IB on mental disorders are still unclear. To provide evidence for establishing feasible strategies on disease screening and prevention, we implemented Mendelian randomization (MR) design to appraise causality between SES/IB and mental disorders.
Methods
We conducted a two-sample MR study to assess the causal effects of SES and IB (dietary habits, habitual physical activity, smoking behaviors, drinking behaviors, sleeping behaviors, leisure sedentary behaviors, risky behaviors, and reproductive behaviors) on three mental disorders, including bipolar disorder, major depressive disorder and schizophrenia. A series of filtering steps were taken to select eligible genetic instruments robustly associated with each of the traits. Inverse variance weighted was used for primary analysis, with alternative MR methods including MR-Egger, weighted median, and weighted mode estimate. Complementary methods were further used to detect pleiotropic bias.
Results
After Bonferroni correction and rigorous quality control, we identified that SES (educational attainment), smoking behaviors (smoking initiation, number of cigarettes per day), risky behaviors (adventurousness, number of sexual partners, automobile speeding propensity) and reproductive behavior (age at first birth) were causally associated with at least one of the mental disorders.
Conclusions
MR study provides robust evidence that SES/IB play broad impacts on mental disorders.
We consider a class of phase-type distributions (PH-distributions), to be called the MMPP class of PH-distributions, and find bounds of their mean and squared coefficient of variation (SCV). As an application, we have shown that the SCV of the event-stationary inter-event time for Markov modulated Poisson processes (MMPPs) is greater than or equal to unity, which answers an open problem for MMPPs. The results are useful for selecting proper PH-distributions and counting processes in stochastic modeling.
The orogenic process and crustal growth of the Changning–Menglian Palaeo-Tethys orogenic belt in the southeastern Tibetan Plateau is not fully understood. Triassic Caojian rhyolites and granites occur extensively in this orogenic belt and represent important constraints for this issue. This study aims to examine the relationships between the Triassic Caojian rhyolites and granites and to gain a better understanding of their possible petrogenesis. The study used zircon U–Pb geochronology, trace element analyses and Sr–Nd–Hf isotope data to better understand the relationships and possible origin of the rhyolites and granites. Recent zircon U–Pb ages indicated that the Caojian rhyolites were emplaced at 227.2 Ma, whereas age estimates for Caojian granites were slightly older (233.4–236.9 Ma). The Caojian rhyolites are enriched in large-ion lithophile elements and high-field-strength elements, with elevated FeOtot/MgO and Ga/Al ratios. However, they are significantly depleted in Ba, Sr, Eu, P and Ti. These geochemical characteristics indicate that they have an A-type affinity. Furthermore, the Caojian granites comprise biotite monzogranites and granodiorites and show unfractionated composition. Mineralogically, the Caojian granites were found to contain diagnostic I-type minerals such as hornblende. Geochemical data suggest that the petrogenesis of the Triassic Caojian rhyolites is characterized by rejuvenation of crystal mush represented by the Triassic Caojian granites. The necessary thermal input was supplied by mafic magma. This magmatic evolution was likely related to lithospheric delamination and upwelling of the asthenosphere during the Mid- to Late Triassic, forming post-collisional I-type granites and A-type volcanics in the Changning–Menglian Palaeo-Tethys orogenic belt.
We report an experimental study of the Prandtl-number effects in quasi-two-dimensional (quasi-2-D) Rayleigh–Bénard convection. The experiments were conducted in four rectangular convection cells over the Prandtl-number range of $11.7 \leqslant Pr \leqslant 650.7$ and over the Rayleigh-number range of $6.0\times 10^8 \leqslant Ra \leqslant 3.0\times 10^{10}$. Flow visualization reveals that, as $Pr$ increases from 11.7 to 145.7, thermal plumes pass through the central region much less frequently and their self-organized large-scale motion is more confined along the periphery of the convection cell. The large-scale flow is found to break down for higher $Pr$, resulting in a regime transition in the Reynolds number $Re$. For the $Pr$ range with a large-scale flow of system size, the $Re$ number, Nusselt number $Nu$ and local temperature fluctuations were investigated systematically. It is found that $Re$ scales as $Re \sim Ra^{0.58}Pr^{-0.82}$ in the present geometry, which suggests that it is in line with the behaviour in the 2-D configuration. On the other hand, the measured $Nu(Ra, Pr)$ relation $Nu \sim Ra^{0.289}Pr^{-0.02}$ tends to be compatible with the finding in a three-dimensional (3-D) system. For the temperature fluctuations in the cell centre and near the sidewall, they exhibit distinct $Ra$-dependent scalings that could not be accounted for with existing theories, but their $Pr$ dependences for $Pr \lesssim 50$ are in agreement with the predictions by Grossmann & Lohse (Phys. Fluids, vol. 16, 2004, pp. 4462–4472). These results enrich our understanding of quasi-2-D thermal convection, and its similarities and differences compared to 2-D and 3-D systems.
The objective of this study was to analyze differences in birth weight and overweight/obesity in a Shanghai twin cohort. We also wanted to study their association and explore possible risk factors for the discordance of overweight/obesity within twins. This was an internal case–control study designed for twins. The 2012 Shanghai Twin Registration System baseline survey data of a total of 3417 twin pairs were statistically analyzed using SPSS22 software. Results show that the body mass index (BMI) of the Shanghai twin population increased with age. Twins with a high birth weight had a higher BMI and a higher rate of overweight and obesity; 0- to 6-year-old twins, male twins and dizygotic (DZ) twins had higher rates of overweight/obesity than other groups. The greater the discordant birth weight rate of twins, the more obvious the difference in BMI (p < .05). There was a significant difference in overweight/obesity between twins with a relative difference of birth weight ≥15% in DZ twins (p < .05). DZ twins, male twins and 0- to 6-year-old twins were more likely to be discordant in overweight/obese than others. The discordant birth weight within twins was not a risk factor for discordant overweight/obesity. However, attention should be paid to childhood obesity, and appropriate interventions should be made at the appropriate time. Genetics may play an important role in the occurrence and development of overweight/obesity. In conclusion, discordant growth and development in the uterus early in life may not lead to discordant weight development in the future.