We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The greatest challenge in pressure reconstruction from the measured velocity fields is that the error of material acceleration is significantly contaminated due to error propagation. Particularly for flows with moving boundaries, accurate boundary velocities are difficult to obtain due to error propagation, and a complex boundary processing technique is needed to treat the moving boundaries. The present work proposes a machine-learning-based method to determine the pressure for incompressible flows with moving boundaries. The proposed network consists of two neural networks: one network, named the boundary network, is used to track the Lagrangian boundary points; the other physics-informed neural network, named the flow network, is adopted to approximate the flow fields. These two networks are coupled by imposing boundary conditions. We further propose a new dynamic weight strategy for the loss terms to guarantee convergence and stability. The performance of the proposed method is validated by two examples: the flow over an oscillating cylinder and the flow around a swimming fish. The proposed method can accurately determine the pressure fields and boundary motion from synthetic particle image velocimetry (PIV) flow fields. Moreover, this method can also predict the boundary and pressure at a given instant without supervised data. Finally, this method was applied to reconstruct the pressure from the two-dimensional and three-dimensional PIV velocities of the left ventricle. All of the results indicate that the proposed method can accurately reconstruct the pressure fields for flows with moving boundaries and is a novel method for surface pressure estimation.
We demonstrate a high-peak-power master oscillator power amplifier burst-mode laser system that generates microsecond burst duration pulses at 355 nm with a GHz-adjustable intra-burst pulse frequency. In the fiber seed, a high-bandwidth electro-optic modulator is employed to modulate a continuous-wave (CW) laser into a pulse train at GHz frequency. To acquire a microsecond rectangular burst pulse envelope, two acousto-optic modulators are used to chop the CW pulse train and generate a pre-compensation burst envelope. A three-stage neodymium-doped yttrium aluminum garnet amplifier boosts the burst-mode fiber seed’s burst energy of 1.65 J at 1064 nm. To achieve a high-power ultraviolet (UV) burst-mode laser, sum frequency generation in a LiB3O5 crystal is employed to convert the wavelength, achieving over 300 kW of peak power at 1.15 μs/10 Hz. The intra-burst pulse frequency of the UV burst laser can be adjustable from 1 to 10 GHz with a sinusoidal waveform. To the best of our knowledge, this paper represents the highest reported microsecond UV burst-mode laser in terms of output energy and peak power with the GHz-adjustable intra-burst frequency. The high-power microsecond UV burst-mode pulse laser can be directly used as a light-driven source in large-bandwidth/high-power microwave photonic systems, providing a long pulse width and high peak power laser while significantly improving the system’s multi-parameter adjustment capability and adaptability.
This study aimed to explore the influence of laryngopharyngeal reflux on the features of vocal fold polyps and prognosis after office-based transnasal vocal fold polypectomy.
Methods
Eighty-four vocal fold polyp patients were retrospectively analysed. Patients were assigned to laryngopharyngeal reflux or non-laryngopharyngeal reflux groups using pre-operative Reflux Symptom Score-12.
Results
The laryngopharyngeal reflux group had significantly higher pre-operative Reflux Sign Assessment scores, worse lifestyle and worse eating habits than the non-laryngopharyngeal reflux group. After office-based transnasal vocal fold polypectomy, the Reflux Symptom Score-12 and Reflux Sign Assessment score decreased in both groups, although the laryngopharyngeal reflux group still had higher values. The non-laryngopharyngeal reflux group had better vocal fold morphology recovery than the laryngopharyngeal reflux group. Multivariate logistic regression analysis demonstrated that smoking and a higher pre-operative Reflux Symptom Score-12 score were independent risk factors for poor prognosis.
Conclusions
Laryngopharyngeal reflux is detrimental to vocal fold recovery of vocal fold polyp patients following office-based transnasal vocal fold polypectomy. For vocal fold polyp patients with laryngopharyngeal reflux, lifestyle and diet guidance should be focused.
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Based on 30 high-resolution U-Th dating controls, we reconstruct stalagmite δ18O records from 45 to 15 thousand years ago (ka B.P., before AD 1950) from the Shizhu Cave, which is located in southwestern China under the influence of both the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM). By integrating with the other stalagmite δ18O records in Asia during the middle to late last glacial, our results reveal two main moisture trajectories: one from the Indian Ocean, through the Shizhu Cave towards central China, and the other from the Pacific Ocean to central and northern China. The systematic decrease of the average values of stalagmite δ18O records from oceans to inland China reveals a spatial pattern of water vapour fractionation and moisture trajectory during the middle to late last glacial. In contrast, the variation amplitude, which is defined as the departures apart from the background δ18O records during Heinrich stadials 1 to 4 (HS1–HS4), show an increasing trend from the coastal oceans to mid-latitude inland China, presenting a ‘coastal-inland’ pattern, which can be interpreted by the enhanced East Asian Winter Monsoon (EAWM) and the weakened EASM. More specifically, the enriched stalagmite δ18O records in the EASM region during HS1 to HS4 are caused by the decreased summer rainfall amount or/and the increased proportion of summer moisture resources from the Pacific Ocean. These new observations deepen our understanding of the complicated stalagmite δ18O records in the EASM region.
Adsorption of uranyl (UO22+) ions to mineral surfaces is a potentially effective method for removing this hazardous metal from water, but other toxic trace metal ions (Xn+: Rb+, Sr2+, Cr3+, Mn2+, Ni2+, Zn2+, Cd2+) in uraniferous wastewaters compete with UO22+ for adsorption sites and thus may diminish the capacity of adsorbents to sequester UO22+. A better understanding of competitive adsorption among these metal ions and the development of better adsorbents are, therefore, of critical importance. The purpose of the present study was to synthesize and characterize magnetic adsorbents, consisting of MFe2O4 (M = Mn, Fe, Zn, Co, or Ni) nanoparticles synthesized on montmorillonite (Mnt) edge sites, and to investigate their use as adsorbents for UO22+, including competitive adsorption with trace metal ions. Selective adsorption was studied using Langmuir, Freundlich, and Dubinin-Radushkevich isotherms, and the results showed that Xn+ ions were adsorbed primarily on MFe2O4-montmorillonite surfaces, and the UO22+ ions were adsorbed on the interfaces between montmorillonite edge surfaces and MFe2O4 nanoparticles. Using the Freundlich model, the interface adsorption capacity of UO22+ reached 25.1 mg·g–1 in mixed solution. Further, the UO22+ and Cr3+ ions had a redox reaction on the interfaces with synergistic adsorption. Herein, the adsorption capacity of Cr3+ was 60.2 mg·g–1 using the Freundlich isotherm. The results demonstrated that the MFe2O4-montmorillonite with highly selective adsorption of UO22+ ions is applicable to UO22+ treatment in the presence of toxic trace metal ions.
In this paper, several linear two-dimensional consecutive k-type systems are studied, which include the linear connected-(k, r)-out-of-$(m,n)\colon\! F$ system and the linear l-connected-(k, r)-out-of-$(m,n)\colon\! F$ system without/with overlapping. Reliabilities of these systems are studied via the finite Markov chain imbedding approach (FMCIA) in a novel way. Some numerical examples are provided to illustrate the theoretical results established here and also to demonstrate the efficiency of the developed method. Finally, some possible applications and generalizations of the developed results are pointed out.
Pyrophyllite is an important layered phyllosilicate material that is used in many fields due to its beneficial physicochemical and mechanical properties. Due to the presence of multiple defects in pyrophyllite, an in-depth investigation was conducted using density functional theory to explore the effects of Na(I), K(I), Mg(II), Ca(II) and Fe(II) doping on the atomic structure, electronic properties and mechanical characteristics of pyrophyllite. The results demonstrated that, among the studied defects, K(I) doping had the most pronounced effects on the lattice constants and bonding lengths of pyrophyllite, while the least significant effects were observed in the case of Fe(II) doping. Moreover, the partial and total densities of states and band structures of the five kinds of doped pyrophyllite also changed significantly due to the redistribution of electrons. Finally, the elastic constants of the doped pyrophyllite were lower than that of the undoped pyrophyllite. Doping with Na(I), K(I), Mg(II), Ca(II) and Fe(II) reduced the deformation resistance, stiffness and elastic wave velocity but increased the degree of anisotropy in pyrophyllite. The observed effects on the mechanical properties of pyrophyllite followed the order: Mg(II) > Fe(II) > Ca(II) >K(I) > Na(I).
Finite state Markov processes and their aggregated Markov processes have been extensively studied, especially in ion channel modeling and reliability modeling. In reliability field, the asymptotic behaviors of repairable systems modeled by both processes have been paid much attention to. For a Markov process, it is well-known that limiting measures such as availability and transition probability do not depend on the initial state of the process. However, for an aggregated Markov process, it is difficult to directly know whether this conclusion holds true or not from the limiting measure formulas expressed by the Laplace transforms. In this paper, four limiting measures expressed by Laplace transforms are proved to be independent of the initial state through Tauber’s theorem. The proof is presented under the assumption that the rank of transition rate matrix is one less than the dimension of state space for the Markov process, which includes the case that all states communicate with each other. Some numerical examples and discussions based on these are presented to illustrate the results directly and to show future related research topics. Finally, the conclusion of the paper is given.
We study the diffusive instability subject to a solid–liquid interface and a Kolmogorov flow using modal, non-modal analyses and energy analysis. It is found that the phase boundary has different effects on the threshold of diffusive convection for weak and strong salinity stratification. In the context of oceanography where the salinity Rayleigh number RS is very high, the ice–water interface has negligible influence on the onset of diffusive convection. In the presence of shear, the diffusive convection for RS < 106 tends to be inhibited and with the increase of shear intensity, the oscillatory, steady convective and Kelvin–Helmholtz instabilities will be successively dominant. For RS > 106, the shear has a destabilizing effect on the diffusive convection, due to the generation of thermohaline-sheared instability found by Radko (J. Fluid Mech., vol. 805, 2016, pp. 147–170). Non-modal analysis indicates that for realistic parameters of high-latitude oceans, with the transition of the ultimate energy source of instability from the density gradient to background current, the thermohaline-shear instability is expected to transition from oscillatory to steady instability. The initial transient amplification due to double diffusion has also been studied, which is due to the generation of overstable instability at the initial phase. For RS < 106, the optimal initial condition to achieve the maximum transient growth favours longitudinal rolls. For thermohaline-shear instability, however, it favours transverse rolls and specifically, in oscillatory thermohaline-shear instability, the transient amplification can be enhanced by the shear by one order of magnitude, thus having important influence on the stability of the system.
OBJECTIVES/GOALS: Glioblastoma (GBM) patients face a poor prognosis. Glioma stem cells (GSCs), a chemo resistant GBM subpopulation, possess enhanced DNA repair and elevated levels of epigenetic modifier KDM1A. This study aims to establish the significance of KDM1A in DNA repair and determine the potential of novel KDM1A inhibitor NCD38 to enhance TMZ efficacy in GSCs. METHODS/STUDY POPULATION: Patient derived GSCs were obtained via IRB-approved protocol from patient samples at UT Health San Antonio. KDM1A knockdown and knockout cells were generated by transduction of validated KDM1A-specific shRNA or gRNA, respectively. Brain bioavailability of KDM1A inhibitor NCD38 was established using LS-MS/MS. Effect of combination of KDM1A knockdown, knockout, or inhibition with TMZ was studied using cell viability, neurosphere, and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, immunofluorescence, comet, Western blotting, RT-qPCR, homologous recombination (HR) or non-homologous end-joining (NHEJ) DNA repair reporter assays. In vivo efficacy of KDM1A knockdown or inhibitor alongside TMZ treatment was determined using orthotopic murine GBM models. RESULTS/ANTICIPATED RESULTS: KDM1A knockdown, knockout, or inhibition increased efficacy of TMZ in reducing cell viability and self-renewal of GSCs. Pharmacokinetic studies demonstrated KDM1A inhibitor NCD38 is readily brain penetrable. CUT&Tag-seq studies revealed KDM1A is enriched at DNA repair gene promoters. RNA-seq studies suggest KDM1A inhibition reduces DNA double strand break repair gene expression, with these findings validated using RT-qPCR and Western blotting. Knockdown, knockout, or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity. Immunofluorescence and comet assay support findings of increased DNA damage in NCD38/TMZ combination treated GSCs. Importantly, KDM1A knockdown or inhibition enhanced efficacy of TMZ and significantly improved survival of orthotopic GBM tumor-bearing mice. DISCUSSION/SIGNIFICANCE: Our results show compelling evidence that KDM1A is essential for DNA repair in GSCs and that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA repair pathways. These findings suggest combination of KDM1A inhibitor NCD38 with TMZ could serve as a promising novel therapeutic strategy that can be translated to improve GBM patient outcomes.
The notion of ordered system signature, originally defined for independent and identical coherent systems, is first extended to the case of independent and non-identical coherent systems, and then some key properties that help simplify its computation are established. Through its use, a dynamic ordered system signature is defined next, which facilitates a systematic study of dynamic properties of several coherent systems under a life test. The theoretical results established here are then illustrated through some specific examples. Finally, the usefulness in the evaluation of aging used systems of the concepts introduced is demonstrated.
The Lochkovian, Pragian, and basal part of the Emsian, which represent the post-Kwangsian Orogeny strata in the South China Block, are mainly composed of siliciclastic rocks. This lithological composition impedes investigation of Pragian and Lochkovian conodont biostratigraphy in the South China Block, which results in a persistent controversy on the age of relevant lithological units. The present study provides new evidence by reporting for the first time Lochkovian conodonts obtained from the South China Block, specifically the Gaoling Member of the Nahkaoling Formation at the Lingli section, central Guangxi. The conodont fauna, consisting of Pandorinellina exigua lingliensis Lu n. subsp., Pandorinellina exigua exigua, Zieglerodina? tuojiangensis Lu n. sp., Amydrotaxis praejohnsoni, and Eognathodus cf. E. irregularis, places the studied interval of the Gaoling Member in the lower or middle Lochkovian (contingent upon varying definitions for the base of the middle Lochkovian) to lower Pragian. Moreover, Amydrotaxis praejohnsoni, which was reported previously only in North America and eastern Australia, is herein also recorded in the South China Block, and thus may play an important role in intercontinental biostratigraphical correlation. By shedding light on the age of the upper limit of the underlying Lianhuashan Formation at the Lingli section, the present study indicates that the Kwangsian Orogeny ended before the late Lochkovian. This date is slightly earlier than the previously estimated late Lochkovian based on studies of fossil plants from the siliciclastic rocks deposited after the Kwangsian Orogeny.
This paper presents systematic molecular dynamics modelling of Na-montmorillonite subjected to uniaxial compression and unidirectional shearing. An initial 3D model of a single-cell Na-montmorillonite structure is established using the Build Crystal module. The space group is C2/m, and COMPASS force fields are applied. Hydration analysis of Na-montmorillonite has been performed to validate the simulation procedures, where the number of absorbed water molecules varied with respect to the various lattice parameters. A series of uniaxial compression stress σzz and unidirectional shear stress τxy values are applied to the Na-montmorillonite structure. It is shown that the lattice parameter and hydration degree exhibit significant influence on the stress–strain relationship of Na-montmorillonite. The ultimate strain increases with increases in the lattice parameter but decreases in the number of water molecules. For saturated Na-montmorillonite, more water molecules result in a stiffer clay mineral under uniaxial compression and unidirectional shearing.
This study aimed to determine the ideal pacing site in children by comparing the postoperative ventricular synchrony in children with left bundle branch area pacing and those with right ventricular septal pacing.
Methods:
This retrospective study included children with complete atrioventricular block who underwent permanent pacemaker implantation from March 2019 to August 2021. Patients were grouped according to their ventricular pacing site, the left bundle branch area pacing group and the right ventricular septal pacing group. Two-dimensional speckle tracking echocardiography was used to evaluate the ventricular synchrony.
Results:
Forty-eight children (median age, 2.7 years; interquartile range, 1.7–4.6 years) were included. The paced QRS duration in the left bundle branch area pacing group was significantly narrower than that in the right ventricular septal pacing group (100.2 ± 9.3 versus 115.4 ± 15.1 ms, p = 0.001). The median follow-up duration was 1.5 years (interquartile range, 1–2 years). At the last follow-up, the average capture threshold of the ventricular electrode in the left bundle branch area pacing group was lower than that in the right ventricular septal pacing group (0.79 ± 0.18 versus 1.20 ± 0.56 V, p = 0.008). The left ventricular intraventricular synchrony parameters in the left bundle branch area pacing group were better than those in the right ventricular septal pacing group (e.g. standard deviation of the time to peak longitudinal strain, 37.4 ± 4.3 versus 46.6 ± 8.2 ms, p = 0.000). The average interventricular mechanical delay time in the left bundle branch area pacing group was significantly shorter than that in the right ventricular septal pacing group (36.4 ± 14.2 versus 52.5 ± 22.7 ms, p = 0.016).
Conclusion:
Compared with right ventricular septal pacing, left bundle branch area pacing in children produces a narrower QRS duration and better pacing and ventricular synchrony parameters postoperatively.
It remains unclear whether all physical activity (PA) domains (e.g., occupation-related PA [OPA], transportation-related PA [TPA], and leisure-time PA [LTPA]) have equivalent beneficial relationships. We aimed to investigate the associations of OPA, TPA, and LTPA with depressive symptoms in adults.
Methods
We included and analyzed 31,221 participants (aged ≥18 years) from the cross-sectional 2007–2018 U.S. National Health and Nutrition Examination Survey (NHANES). The PA domains were assessed by a self-report questionnaire and categorized based on the PA guidelines. Depressive symptoms were measured by the nine-item Patient Health Questionnaire.
Results
Participants achieving PA guidelines (≥150 min/week) were 26% (odds ratio [OR] 0.74, 95% confidence interval [CI] 0.68–0.80) and 43% (OR 0.57, 95% CI 0.51–0.62) less likely to have depressive symptoms depending on total PA and LTPA, respectively, while OPA or TPA did not demonstrate lower risks of depressive symptoms. LTPA at levels of 1–149, 150–299, and ≥300 min/week was associated with 31% (OR 0.69, 95% CI 0.60–0.78), 43% (OR 0.57, 95% CI 0.49–0.67), and 51% (OR 0.49, 95% CI 0.43–0.55) lower odds of depressive symptoms, respectively.
Conclusion
LTPA, but not OPA or TPA, was associated with a lower risk of depressive symptoms at any amount, suggesting that significant mental health would benefit from increased PA, even at levels below the recommendation.
High-molecular-weight glutenin subunits (HMW-GS) contribute to dough elasticity and bread baking quality in wheat. In this study, wheat varieties were classified based on their HMW-GS composition into three groups: 1Dx5 (5 + 10, Gaoyou 8901, Xinmai 28, Xinmai 19, Xinmai 26 and Jinbaoyin), 1Dx2 (2 + 12, Zhoumai 24, Xinmai 9 and Yumai) and 1Dx4 (4 + 12, Aikang 58). Sequence analysis showed that 1Dx-GY8901, 1Dx-XM28, 1Dx-XM19 and 1Dx-XM26 were similar to the 1Dx5 gene and clustered on the same branch, while 1Dx-AK58, 1Dx-ZM24, 1Dx-JBY, 1Dx-YM, 1Dx-XM9 and 1Dx-JBY were more similar to the 1Dx2 gene and clustered on the same branch with 1Dx.2.2. There was a mutation of Ser to Cys at position S2, for an extra Cys in the repeat regions of 1Dx-XM19, 1Dx-XM26, 1Dx-XM28 and 1Dx-GY8901. The wheat HMW-GS genes exhibited similar percentages of α-helix, extended strand, β-turn and random coil structure, with ranges of 13.33–13.59, 4.77–5.78, 7.08–9.18 and 72.3–73.94%, respectively. Sequence conservation and the composition of HMW-GS subunits were also analysed for a series of strong gluten wheat varieties, Xinmai 9 (1, 7 + 8, 2 + 12), Xinmai 19 (1, 7 + 9, 5 + 10), Xinmai 26 (1, 7 + 8, 5 + 10) and Xinmai 28 (1, 7 + 9, 5 + 10). The results of this work should facilitate future breeding efforts and provide the theoretical basis for wheat quality improvement.
Immune cells play a key role in maintaining renal dynamic balance and dealing with renal injury. The physiological and pathological functions of immune cells are intricately connected to their metabolic characteristics. However, immunometabolism in chronic kidney disease (CKD) is not fully understood. Pathophysiologically, disruption of kidney immune cells homeostasis causes inflammation and tissue damage via triggering metabolic reprogramming. The diverse metabolic characteristics of immune cells at different stages of CKD are strongly associated with their different pathological effect. In this work, we reviewed the metabolic characteristics of immune cells (macrophages, natural killer cells, T cells, natural killer T cells and B cells) and several non-immune cells, as well as potential treatments targeting immunometabolism in CKD. We attempt to elaborate on the metabolic signatures of immune cells and their intimate correlation with non-immune cells in CKD.