We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present an experimental study on the effects of polymer additives on the turbulent/non-turbulent interface (TNTI) in a fully developed round water jet. The Reynolds number based on the jet diameter is fixed at $Re=7075$. The Weissenberg number $Wi$ ranges from 24 to 86. We employ time-resolved simultaneous particle image velocimetry and laser-induced fluorescence measurements to investigate the local entrainment and engulfment process along the TNTI in two regimes: entrainment transition and enhancement regimes. In polymer-laden jets, the TNTI fluctuates more intermittently in the radial direction and more ambient fluid can be engulfed into the turbulent region due to the augmented large scale motion. Though the contribution of engulfment to the total flux increases with $Wi$, engulfment is still not the major contribution to the entrainment in polymer-laden jets. We further show that the local entrainment velocity is increased in both regimes compared with the pure water jet, due to two contributions: polymer elastic stress and the more intermittent character of the TNTI. In the entrainment transition regime, we observe smaller fractal dimension and shorter length of TNTI compared with the Newtonian case, consistent with previous numerical simulations (Abreu et al. J. Fluid Mech. vol. 934, 2022, A36); whereas those in the enhancement regime remain largely unchanged. The difference between the two regimes results from the fact that the jet flow decays in the streamwise direction. In the entrainment transition regime, turbulence intensity is strong enough to significantly stretch the polymers, resulting in a smoother TNTI in the inertial range. However, in the entrainment enhancement regime, the polymer’s feedback is not strong enough to alter the fractal dimension due to the low elasticity. The above mentioned differences of entrainment velocity and TNTI in the entrainment reduction/transition and enhancement regimes also explain the reduced and enhanced spreading rate of the viscoelastic jet observed in previous numerical simulations and experiments (Guimarães et al. J. Fluid Mech. 2020,vol. 899, A11; Peng et al. Phys. Fluids, 2023, vol. 35, 045110).
Two potential obstacles stand between the observation of a statistical correlation and the design (and deployment) of an effective intervention, omitted variable bias and reverse causality. Whereas the former has received ample attention, comparably scant focus has been devoted to the latter in the methodological literature. Many existing methods for reverse causality testing commence by postulating a structural model that may suffer from widely recognized issues such as the difficulty of properly setting temporal lags, which are critical to model validity. In this article, we draw upon advances in machine learning, specifically the recently established link between causal direction and the effectiveness of semi-supervised learning algorithms, to develop a novel method for reverse causality testing that circumvents many of the assumptions required by traditional methods. Mathematical analysis and simulation studies were carried out to demonstrate the effectiveness of our method. We also performed tests over a real-world dataset to show how our method may be used to identify causal relationships in practice.
Recent experiments and simulations have sparked growing interest in the study of Rayleigh–Bénard convection in very slender cells. One pivotal inquiry arising from this interest is the elucidation of the flow structure within these very slender cells. Here we employ tomographic particle image velocimetry, for the first time, to capture experimentally the full-field three-dimensional and three-component velocity field in a very slender cylindrical cell with aspect ratio $\Gamma =1/10$. The experiments cover a Rayleigh number range $5.0 \times 10^8 \leqslant Ra \leqslant 5.0 \times 10^9$ and Prandtl number 5.7. Our experiments reveal that the flow structure in the $\Gamma =1/10$ cell is neither in the multiple-roll form nor in the simple helical form; instead, the ascending and descending flows can intersect and cross each other, resulting in the crossing events. These crossing events separate the flow into segments; within each segment, the ascending and descending flows ascend or descend side by side vertically or in the twisting manner, and the twisting is not unidirectional, while the segments near the boundary can also be in the form of a donut like structure. By applying the mode decomposition analyses to the measured three-dimensional velocity fields, we identified the crossing events as well as the twisting events for each instantaneous flow field. Statistical analysis of the modes reveals that as $Ra$ increases, the average length of the segments becomes smaller, and the average number of segments increases from 2.5 to 3.9 in the $Ra$ range of our experiments.
For a nondegenerate r-graph F, large n, and t in the regime $[0, c_{F} n]$, where $c_F>0$ is a constant depending only on F, we present a general approach for determining the maximum number of edges in an n-vertex r-graph that does not contain $t+1$ vertex-disjoint copies of F. In fact, our method results in a rainbow version of the above result and includes a characterization of the extremal constructions.
Our approach applies to many well-studied hypergraphs (including graphs) such as the edge-critical graphs, the Fano plane, the generalized triangles, hypergraph expansions, the expanded triangles, and hypergraph books. Our results extend old results of Erdős [13], Simonovits [76], and Moon [58] on complete graphs, and can be viewed as a step toward a general density version of the classical Corrádi–Hajnal [10] and Hajnal–Szemerédi [32] theorems.
Our method relies on a novel understanding of the general properties of nondegenerate Turán problems, which we refer to as smoothness and boundedness. These properties are satisfied by a broad class of nondegenerate hypergraphs and appear to be worthy of future exploration.
We present an experimental study on the drag reduction by polymers in Taylor–Couette turbulence at Reynolds numbers ($Re$) ranging from $4\times 10^3$ to $2.5\times 10^4$. In this $Re$ regime, the Taylor vortex is present and accounts for more than 50 % of the total angular velocity flux. Polyacrylamide polymers with two different average molecular weights are used. It is found that the drag reduction rate increases with polymer concentration and approaches the maximum drag reduction (MDR) limit. At MDR, the friction factor follows the $-0.58$ scaling, i.e. $C_f \sim Re^{-0.58}$, similar to channel/pipe flows. However, the drag reduction rate is about $20\,\%$ at MDR, which is much lower than that in channel/pipe flows at comparable $Re$. We also find that the Reynolds shear stress does not vanish and the slope of the mean azimuthal velocity profile in the logarithmic layer remains unchanged at MDR. These behaviours are reminiscent of the low drag reduction regime reported in channel flow (Warholic et al., Exp. Fluids, vol. 27, no. 5, 1999, pp. 461–472). We reveal that the lower drag reduction rate originates from the fact that polymers strongly suppress the turbulent flow while only slightly weaken the mean Taylor vortex. We further show that polymers steady the velocity boundary layer and suppress the small-scale Görtler vortices in the near-wall region. The former effect reduces the emission rate of both intense fast and slow plumes detached from the boundary layer, resulting in less flux transport from the inner cylinder to the outer one and reduces energy input into the bulk turbulent flow. Our results suggest that in turbulent flows, where secondary flow structures are statistically persistent and dominate the global transport properties of the system, the drag reduction efficiency of polymer additives is significantly diminished.
To assess the association between the risk of malnutrition, as estimated by the Patient-Generated Subjective Global Assessment (PG-SGA) numerical scores, and adverse outcomes in oncology patients.
Design:
Systematic review and meta-analysis.
Settings:
A comprehensive search was conducted in PubMed, Web of Science, Embase, CKNI, VIP, Sinomed and Wanfang databases. Studies that examined the association between the risk of malnutrition, as estimated by the PG-SGA numerical scores, and overall survival (OS) or postoperative complications in oncology patients were included. Patients were classified as low risk (PG-SGA ≤ 3), medium risk (PG-SGA 4–8) and high risk of malnutrition (PG-SGA > 8).
Subject:
Nineteen studies reporting on twenty articles (n 9286 patients).
Results:
The prevalence of medium and high risk of malnutrition ranged from 16·0 % to 71·6 %. A meta-analysis showed that cancer patients with medium and high risk of malnutrition had a poorer OS (adjusted hazard ratios (HR) 1·98; 95 % CI 1·77, 2·21) compared with those with a low risk of malnutrition. Stratified analysis revealed that the pooled HR was 1·55 (95 % CI 1·17, 2·06) for medium risk of malnutrition and 2·65 (95 % CI 1·90, 3·70) for high risk of malnutrition. Additionally, the pooled adjusted OR for postoperative complications was 4·65 (95 % CI 1·61, 13·44) for patients at medium and high risk of malnutrition.
Conclusions:
The presence of medium and high risk of malnutrition, as estimated by the PG-SGA numerical scores, is significantly linked to poorer OS and an increased risk of postoperative complications in oncology patients.
Organic data have the potential to enable innovative measurements and research designs by virtue of capturing human behavior and interactions in social, educational, and organizational processes. Yet what makes organic data valuable also raises privacy concerns for those individuals whose personal information is being collected and analyzed. This chapter discusses the potential privacy threats posed by organic datasets and the technical tools available to ameliorate such threats. Also noted is the importance for educators and research scientists to participate in interdisciplinary research that addresses the privacy challenges arising from the collection and use of organic data.
The application scopes of two different reductive perturbation methods to derive the Korteweg–de Vries (KdV) equation and coupled KdV (CKdV) equation in two-temperature-ion dusty plasma are given by using the particle-in-cell (PIC) numerical method in the present paper. It suggests that the reductive perturbation method (RPM) is valid if the amplitude of the CKdV solitary wave is small enough. However, for the KdV solitary wave, RPM is valid not only if the amplitude of the KdV solitary wave is small enough, but also if the nonlinear coefficient of the KdV equation is not tending to zero.
This paper presents an experimental study on how both variable solid volume fractions and aspect ratios (length/width) of a centre-channel rectangular porous patch under aligned configuration of rigid and emergent stems impact the flow behaviour and wake structure. This study forms an essential extension to the existing fundamentals and knowledge on this topic. Through rigorous experimental tests by velocity measurement and dye visualization, the aspect ratio, rarely addressed before, is confirmed to play a critical role. Vortex street, unable to be triggered under a low solid volume fraction, however, can be generated by elongating the patch (increasing the aspect ratio). The key reason is that patch elongation promotes the generation of the wake vortex street by producing a relatively high transverse velocity gradient in the wake region. Meanwhile, Kelvin–Helmholtz vortex streets are triggered along the two patch lateral edges, re-increasing the in-patch velocity and imposing contributions to the wake vortex streets generation. By scaling the characteristic velocity (at the wake vortex initiation position and patch trailing edge) and solid volume fraction with the patch aspect ratio, three non-dimensional threshold maps can be established to express the combined effects of the solid volume fraction and aspect ratio on the initiation of the wake vortex street. They could be alternatively used for theoretical analysis and implementation on wake formation and structure subject to parameter availability.
The northern Alxa region is located in the central segment of the southern Central Asian Orogenic Belt. Many controversies and deficiencies still exist regarding the magma source characteristics, petrogenesis and tectonic regimes during the late Palaeozoic – early Mesozoic period within this region. This study presents whole-rock compositions and zircon U–Pb and Lu–Hf isotopic data for three early Mesozoic I- and A-type granitic plutons occurring in the northern Alxa region. The Haerchaoenji and Chahanhada I-type granitoids yielded zircon 206Pb–238U ages of 245 ± 5 Ma and 245 ± 2 Ma, respectively. The variable positive zircon ϵHf(t) values between +1.8 and +11.8, with young TDM ages of 425–837 Ma, indicate that these I-type granitoids were mainly derived from juvenile crustal materials. The Wulantaolegai pluton has a zircon 206Pb–238U age of 237 ± 2 Ma and is classified as having high-K calc-alkaline A-type affinity. Furthermore, the positive zircon ϵHf(t) values of the Wulantaolegai granite range from +3.3 to +8.7 with young TDM ages of 545–778 Ma, suggesting the involvement of a juvenile crustal source as well. Furthermore, the major-element compositions of the Chahanhada and Wulantaolegai granites suggest the input of metasedimentary components. Geochemically, the Haerchaoenji and Chahanhada I-type granitoids show an arc affinity, while the Wulantaolegai granite exhibits a post-collisional affinity. However, with regional data, we suggest that the Haerchaoenji and Chahanhada I-type granitoids were also emplaced in a post-collisional setting, and the arc affinity was probably inherited from recycled subduction-related materials. These lines of evidence obtained in this study enable us to argue that the Palaeo-Asian Ocean in the central segment of the Central Asian Orogenic Belt closed before Middle Triassic time.
In this work, we propose using an ensemble Kalman method to learn a nonlinear eddy viscosity model, represented as a tensor basis neural network, from velocity data. Data-driven turbulence models have emerged as a promising alternative to traditional models for providing closure mapping from the mean velocities to Reynolds stresses. Most data-driven models in this category need full-field Reynolds stress data for training, which not only places stringent demand on the data generation but also makes the trained model ill-conditioned and lacks robustness. This difficulty can be alleviated by incorporating the Reynolds-averaged Navier–Stokes (RANS) solver in the training process. However, this would necessitate developing adjoint solvers of the RANS model, which requires extra effort in code development and maintenance. Given this difficulty, we present an ensemble Kalman method with an adaptive step size to train a neural-network-based turbulence model by using indirect observation data. To our knowledge, this is the first such attempt in turbulence modelling. The ensemble method is first verified on the flow in a square duct, where it correctly learns the underlying turbulence models from velocity data. Then the generalizability of the learned model is evaluated on a family of separated flows over periodic hills. It is demonstrated that the turbulence model learned in one flow can predict flows in similar configurations with varying slopes.
Traditionally, the strata of the Luonie Valley, Dechang County, SW Sichuan, China, are considered to contain a suite of felsic volcanic rocks (the Huili Group) that erupted after c. 1050 Ma. However, we report here new age constraints, elemental and Lu–Hf isotope geochemistry for a different suite of older basaltic agglomerate lava, basaltic tuff lava and basalt from the same area, which we name the Luonie Formation. New dating results show that the basaltic volcanic suite of the upper part of the Luonie Formation formed at 1126.1 ± 9.9 Ma, significantly earlier than deposition of the Huili Group, but comparable in age to the 1142 ± 16 Ma Laowushan Formation in central Yunnan Province. Granite intrusion into the Luonie Formation dated 1050.7 ± 12.7 Ma provides crucial supporting evidence for this earlier depositional age. We also report a maximum sedimentary age of c. 1158 Ma for the underlying arkose, implying stratigraphic conformity with the basaltic volcanic rock suite.
The ϵHf(t) values of the basaltic volcanic rocks are mainly positive, indicating that the rocks are mainly derived from the depleted mantle and slightly stained by crustal materials. The characteristics of P*, Nb* and Zr* anomalies also support this view. The distribution patterns of trace and rare earth elements indicate that the basaltic volcanic rocks formed in an extensional setting. The Zr/4–Y–2Nb and Th–Nb/16–Zr/117 discrimination diagrams also provide evidence for this understanding. Lithofacies analysis shows that basaltic volcanic wrocks with the characteristics of both continental and marine facies should be formed in a littoral–neritic environment. We propose here that the evidence is consistent with a phase of continental extension that preceded the convergence of the SW Yangtze Block to form part of Rodinia.
Different kinds of waves and instabilities in the F-region of the ionosphere excited by the relative streaming of the dust beam to the background plasma are studied in the present paper. The dispersion relations of different waves are obtained on different time scales. It is found from our numerical results that there are both a stable upper hybrid wave on the electron vibration time scale and a stable dust ion cyclotron wave on the ion vibration time scale. However, the chaotic behaviour appears on the dust particles vibration time scale due to the relative streaming of the dust particles to the background plasma. Such instabilities may drive plasma irregularities that could affect radar backscatter from the clouds.
The complex sea ice conditions in Arctic waters has different impacts on the legs of the Arctic passage, and ships of specific ice classes face different navigation risks. Therefore, the quantitative analysis of the navigation risks faced in different legs has important practical significance. Based on the POLARIS introduced by IMO, the sea ice condition data from 2011 to 2020 was used to quantify the navigation risk of the Arctic Northeast passage. The risk index outcome (RIO) of the Arctic Northeast Passage were calculated. The navigable windows of the route for ice class 1A ships sailing independently under different sea ice conditions in the last decade were determined, with a navigable period of 91 days under normal sea ice conditions, approximately 175 days under light sea ice conditions and only week 40 close to navigation under severe sea ice conditions. The three critical waters affecting the safety of ships were identified. Combined with the navigable windows and critical waters, recommendations on ship's navigation and manipulation and recommendations for stakeholders were given. The method and results provided reference and support for the assessment of the navigation risk of ships in the Northeast Passage and safety navigation and operations of ships, and satisfied the needs of relevant countries and enterprises to rationally arrange shipment dates and sailing plans based on different ice classes of ships.
In this paper, we designed two different configurations with locally isothermal sidewalls, where the temperature is set to be the bulk temperature, to control the large-scale circulation in turbulent Rayleigh–Bénard convection, namely two-point control and four-point control. At fixed Rayleigh number $Ra=10^8$ and Prandtl number $Pr=2$, a series of direct numerical simulations are performed on both two-dimensional (2-D) and quasi-two-dimensional (quasi-2-D) cavities with both types of control, where the width of the control area is fixed at $\delta _c=0.05$ and the vertical distance from the cavity centre $h_c$ varies from 0 to 0.45 with an interval of 0.05. Our results show that the control effect depends on $h_c$, the control configurations as well as the flow dimensions. For 2-D cavities, both two-point control and four-point control suppress the flow reversal when $h_c \geq 0.05$, accompanied by the enhancement of vertical heat transfer and the strength of the large-scale circulation. For quasi-2-D cavities, the suppression of the flow reversals is obvious with two-point control and $h_c\geq 0.05$, while the effect is rather limited with four-point control. Further experiments with $Pr=5.7$ and $Ra$ up to $7.36\times10^8$ show that two-point control with $h_c=0.15$ can effectively suppress the flow reversal, while two-point control with $h_c=0$ can suppress the reversals at low $Ra=1.93\times 10^8$ and activate them at higher $Ra=7.36\times 10^8$, which agrees well with our numerical simulations.
We present an experimental study on controlling the number of vortices and the torque in a Taylor–Couette flow of water for Reynolds numbers from 660 to 1320. Different flow states are achieved in the annulus of width $d$ between the inner rotating and outer stationary cylinders through manipulating the initial height of the water annulus. We show that the torque exerted on the inner cylinder of the Taylor–Couette system can be reduced by up to 20 % by controlling the flow at a state where fewer than the nominal number of vortices develop between the cylinders. This flow state is achieved by starting the system with an initial water annulus height $h_0$ (which nominally corresponds to $h_0/d$ vortices), then gradually adding water into the annulus while the inner cylinder keeps rotating. During this filling process the flow topology is so persistent that the number of vortices does not increase; instead, the vortices are greatly stretched in the axial (vertical) direction. We show that this state with stretched vortices is sustainable until the vortices are stretched to around 2.05 times their nominal size. Our experiments reveal that by manipulating the initial height of the liquid annulus we are able to generate different flow states and demonstrate how the different flow states manifest themselves in global momentum transport.
The chase procedure for existential rules is an indispensable tool for several database applications, where its termination guarantees the decidability of these tasks. Most previous studies have focused on the skolem chase variant and its termination analysis. It is known that the restricted chase variant is a more powerful tool in termination analysis provided a database is given. But all-instance termination presents a challenge since the critical database and similar techniques do not work. In this paper, we develop a novel technique to characterize the activeness of all possible cycles of a certain length for the restricted chase, which leads to the formulation of a framework of parameterized classes of the finite restricted chase, called
$k$-$\mathsf{safe}(\Phi)$
rule sets. This approach applies to any class of finite skolem chase identified with a condition of acyclicity. More generally, we show that the approach can be applied to the hierarchy of bounded rule sets previously only defined for the skolem chase. Experiments on a collection of ontologies from the web show the applicability of the proposed methods on real-world ontologies.
Dolostones are widely developed in the middle Permian rocks of East Yunnan, China, mainly in the shoal-facies Maokou Formation. The previously reported dolostone formation mechanisms cannot explain the distribution and geochemical characteristics of these dolostones, in particular their strontium, magnesium and oxygen isotope signatures. To help predict the distribution of dolostone reservoirs and reduce the exploration risk and cost, this study proposes a new model of dolomitization: open thermal convection dolomitization. In this new dolomitization model, Mg2+ in dolomitizing fluids originates mostly from seawater, with a minor component coming from deep hydrothermal fluids. Elevated heat flux (in this case due to the nearby Emei mantle plume) causes spatial temperature variations in the fluid along the circulation flow pathways, resulting in fast and pervasive dolomitization of limestone. The proposed model not only explains the characteristics and distribution of dolostones in the study area but also serves as a reference for predicting the distribution of dolostones in other areas subjected to thermal convection.
We find that corporate innovation is positively related to board diversity as measured by a multidimensional index. The benefit of board diversity is more pronounced for firms with more complex operations, more experienced boards, and stronger external governance, suggesting that diverse boards have superior advising capacity. We find evidence to suggest that firms with diverse boards engage in more exploratory innovations and develop new technology in unfamiliar areas. As a result, they create a larger number of both most-cited and uncited patents. Finally, of the six different aspects of board diversity, professional diversity matters the most for corporate innovation.
The mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.