We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Electron field emission was measured from GaN nanotip pyramids formed by polarity-selective chemical etching in KOH solution. The GaN samples were grown by plasma-assisted molecular beam epitaxy and consisted of regions of Ga- and N-polar GaN grown at the same time. The pyramids were formed only in the N-polar regions and have extremely sharp tips with diameters estimated to be less than 20 nm. Field emission measurements showed a characteristic Fowler-Nordheim behavior. The average turn-on field was 1.6 V/μm with a corresponding normalized field enhancement factor of about 1500.
In this paper we report on the fabrication and characterization of GaN diodes (Schottky and p-n junctions) grown by plasma assisted MBE. We observed that Schottky diodes improve both in reverse as well as forward bias when deposited on 5 μm thick HVPE n+-GaN/sapphire instead of bare sapphire substrates. These improvements are attributed to the reduction of disloctions in the MBE homoepitaxially grown GaN. Similar benefits are observed in the reverse bias of the p-n junctions which according to EBIC measurements are attributed to the reduction of etch pits in the MBE grown p-GaN.
In this paper we report on the fabrication and characterization of GaN diodes (Schottky and p-n junctions) grown by plasma assisted MBE. We observed that Schottky diodes improve both in reverse as well as forward bias when deposited on 5 μm thick HVPE n+-GaN/sapphire instead of bare sapphire substrates. These improvements are attributed to the reduction of disloctions in the MBE homoepitaxially grown GaN. Similar benefits are observed in the reverse bias of the p-n junctions which according to EBIC measurements are attributed to the reduction of etch pits in the MBE grown p-GaN.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.