We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
High-fat food intake is associated with atopic dermatitis (AD), but the role of habitual dietary habits related to the frequency of high-fat food intake remains unclear. To address this, we developed a frequency-based dietary index, Diet Quality based on Dietary Fat Score, to assess high-fat food intake and examined its association with AD in 13,561 young Chinese adults (mean age = 22.51 years, SD ± 5.90) from Singapore and Malaysia. Using an investigator-administered questionnaire aligned with the validated International Study of Asthma and Allergy in Childhood protocol, we conducted multivariable logistic regression adjusting for demographics, body mass index, genetic predisposition, and lifestyle factors, with false discovery rate correction for multiple comparisons. Frequent high-fat food intake was associated with higher odds of AD presentation (Adjusted Odds Ratios [AOR]: 1.525; 95% Confidence Intervals [CI]: 1.314-1.772; adjusted p < 0.001). The association remained significant regardless of total fat intake (AOR: 1.445; 95% CI: 1.054-1.801; adjusted p < 0.001) and among individuals with high fruit and vegetable intake (Adjusted Odds Ratios [AOR]: 1.489; 95% Confidence Intervals [CI]: 1.191-1.860; adjusted p < 0.001) or low energy intake (AOR: 1.399; 95% CI: 1.054-1.857; adjusted p < 0.05). No synergistic effects were observed between dietary factors. These findings highlight that frequent intake of high-fat foods is independently associated with AD, emphasizing the importance of dietary moderation in AD risk management.
Mapping reviews (MRs) are crucial for identifying research gaps and enhancing evidence utilization. Despite their increasing use in health and social sciences, inconsistencies persist in both their conceptualization and reporting. This study aims to clarify the conceptual framework and gather reporting items from existing guidance and methodological studies. A comprehensive search was conducted across nine databases and 11 institutional websites, including documents up to January 2024. A total of 68 documents were included, addressing 24 MR terms and 55 definitions, with 39 documents discussing distinctions and overlaps among these terms. From the documents included, 28 reporting items were identified, covering all the steps of the process. Seven documents mentioned reporting on the title, four on the abstract, and 14 on the background. Ten methods-related items appeared in 56 documents, with the median number of documents supporting each item being 34 (interquartile range [IQR]: 27, 39). Four results-related items were mentioned in 18 documents (median: 14.5, IQR: 11.5, 16), and four discussion-related items appeared in 25 documents (median: 5.5, IQR: 3, 13). There was very little guidance about reporting conclusions, acknowledgments, author contributions, declarations of interest, and funding sources. This study proposes a draft 28-item reporting checklist for MRs and has identified terminologies and concepts used to describe MRs. These findings will first be used to inform a Delphi consensus process to develop reporting guidelines for MRs. Additionally, the checklist and definitions could be used to guide researchers in reporting high-quality MRs.
The sulphur microbial diet (SMD), a dietary pattern associated with forty-three sulphur-metabolising bacteria, may influence gut microbiota composition and contribute to ageing process through gut-produced hydrogen sulfide (H2S). We aimed to explore the association between SMD and biological age (BA) acceleration, using the cross-sectional study that included 71 579 individuals from the UK Biobank. The SMD score was calculated by multiplying β-coefficients by corresponding serving sizes and summing them, based on dietary data collected using the Oxford WebQ, a 24-hour dietary assessment tool. BA was assessed using Klemerae–Doubal (KDM) and PhenoAge methods. The difference between BA and chronological age refers to the age acceleration (AgeAccel), termed ‘KDMAccel’ and ‘PhenoAgeAccel’. Generalised linear regression was performed. Mediation analyses were used to investigate underlying mediators including BMI and serum aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio. Following adjustment for multiple variables, a positive association was observed between consuming a dietary pattern with a higher SMD score and both KDMAccel (βQ4 v. Q1 = 0·35, 95 % CI = 0·27, 0·44, P < 0·001) and PhenoAgeAccel (βQ4 v. Q1 = 0·32, 95 % CI = 0·23, 0·41, P < 0·001). Each 1-SD increase in SMD score was positively associated with the acceleration of BA by 7·90 % for KDMAccel (P < 0·001) and 7·80 % for PhenoAgeAccel (P < 0·001). BMI and AST/ALT mediated the association. The stratified analysis revealed stronger accelerated ageing impacts in males and smokers. Our study indicated a higher SMD score is associated with elevated markers of biological ageing, supporting the potential utility of gut microbiota-targeted dietary interventions in attenuating the ageing process.
To summarise the characteristics and postoperative outcomes in paediatric patients with coronary sinus septal defect.
Method:
This retrospective study recruited paediatric patients diagnosed with coronary sinus septal defect from the Guangdong Cardiovascular Institute between 2011 and 2023. Clinical characteristics, echocardiographic parameters, surgical procedures, and postoperative outcomes were collected from electronic health records.
Results:
Among the 68 patients, 50% were male, with a median age of 1.0 years. Four cases (5.9%) were diagnosed during the prenatal period. The proportions of patients with type I, II, III, and IV coronary sinus septal defect were 51.5%, 5.9%, 16.1%, and 26.5%, respectively. The most common coexisting cardiac anomalies were persistent left superior caval vein. Twenty-seven cases were either missed or misdiagnosed by echocardiogram, accounting for 39.7% of the overall cases, with type I being the most frequently missed diagnosis. Fifty-four patients underwent surgery, two patients received transcutaneous intervention, while the remaining patients did not undergo any surgery or intervention. At follow-up, two patients with type I coronary sinus septal defect died from multiorgan dysfunction, and one patient underwent reoperation due to narrowing of the extracardiac tunnel. The remaining patients did not experience any major events and recovered well.
Conclusion:
Paediatric patients with coronary sinus septal defect often do not exhibit specific clinical manifestations. Enhancing our understanding of the anatomic and haemodynamic characteristics of coronary sinus septal defect can improve the diagnostic accuracy of echocardiography. If diagnosis is suspected, confirmation can be obtained by cardiac CT and cardiac magnetic resonance. Accurate preoperative and intraoperative diagnosis of coronary sinus septal defect contributes to high surgical success rates and favourable treatment outcomes.
Electron cyclotron resonance ion thrusters (ECRITs) have the potential to be used for space gravitational wave detection due to their wide thrust range. However, an unclear understanding of dynamic processes of ECRITs with strongly coupled multi-operating parameters limits further improvements on thrust noise and response velocity by feedback control systems. An integrative mathematical model considering the non-Maxwell electron energy distribution function for ECRITs is validated by experiments and used to study the influence of operating parameters on the dynamic processes of thrusters, which provides a new simplified grid model. Simulation results show the response processes with microwave (MW) power can be divided into two stages. The characteristic times of the first and second stages are respectively several microseconds and 10 ms, which are respectively dominated by plasma motion and the volume effect. The overshoot of screen grid (SG) current decreases, while its response time remains unchanged when the response time of MW power is prolonged. The response time of SG current with a step increase of flow rate is approximately 10 ms, consistent with the volume effect. The SG current decreases with rise of flow rate for high flow rate operations due to the small increment of ion density limited by low electron temperature, the decrease of ion Bohm velocity and reduction of sheath extraction area. The influence of grid voltage on the dynamic process of the SG current depends on variation ranges of extraction capabilities. When variations of sheath extraction area are limited, the response time is 5 μs, consistent with plasma response time. It is prolonged to 0.5 ms if sheath extraction area variations are large because they cause obvious variations of plasma parameters in the discharge chamber. These dynamic results can not only facilitate designing feedback controllers of micro-propulsion systems for high-precision space missions, but also provide guidance for ion sources to generate highly stable or rapid-response ion beam.
Computerized assessment provides rich multidimensional data including trial-by-trial accuracy and response time (RT) measures. A key question in modeling this type of data is how to incorporate RT data, for example, in aid of ability estimation in item response theory (IRT) models. To address this, we propose a joint model consisting of a two-parameter IRT model for the dichotomous item response data, a log-normal model for the continuous RT data, and a normal model for corresponding paper-and-pencil scores. Then, we reformulate and reparameterize the model to capture the relationship between the model parameters, to facilitate the prior specification, and to make the Bayesian computation more efficient. Further, we propose several new model assessment criteria based on the decomposition of deviance information criterion (DIC) the logarithm of the pseudo-marginal likelihood (LPML). The proposed criteria can quantify the improvement in the fit of one part of the multidimensional data given the other parts. Finally, we have conducted several simulation studies to examine the empirical performance of the proposed model assessment criteria and have illustrated the application of these criteria using a real dataset from a computerized educational assessment program.
We generalize the power divergence (PD) family of statistics to the two-parameter logistic IRT model for the purpose of constructing hypothesis tests and confidence intervals of the person parameter. The well-known score test statistic is a special case of the proposed PD family. We also prove the proposed PD statistics are asymptotically equivalent and converge in distribution to \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\chi _{1}^2$$\end{document}. In addition, a moment matching method is introduced to compare statistics and choose the optimal one within the PD family. Simulation results suggest that the coverage rate of the associated confidence interval is well controlled even under small sample sizes for some PD statistics. Compared to some other approaches, the associated confidence intervals exhibit smaller lengths while maintaining adequate coverage rates. The utilities of the proposed method are demonstrated by analyzing a real data set.
Despite growing awareness of the mental health damage caused by air pollution, the epidemiologic evidence on impact of air pollutants on major mental disorders (MDs) remains limited. We aim to explore the impact of various air pollutants on the risk of major MD.
Methods
This prospective study analyzed data from 170 369 participants without depression, anxiety, bipolar disorder, and schizophrenia at baseline. The concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), particulate matter with aerodynamic diameter > 2.5 μm, and ≤ 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were estimated using land-use regression models. The association between air pollutants and incident MD was investigated by Cox proportional hazard model.
Results
During a median follow-up of 10.6 years, 9 004 participants developed MD. Exposure to air pollution in the highest quartile significantly increased the risk of MD compared with the lowest quartile: PM2.5 (hazard ratio [HR]: 1.16, 95% CI: 1.09–1.23), NO2 (HR: 1.12, 95% CI: 1.05–1.19), and NO (HR: 1.10, 95% CI: 1.03–1.17). Subgroup analysis showed that participants with lower income were more likely to experience MD when exposed to air pollution. We also observed joint effects of socioeconomic status or genetic risk with air pollution on the MD risk. For instance, the HR of individuals with the highest genetic risk and highest quartiles of PM2.5 was 1.63 (95% CI: 1.46–1.81) compared to those with the lowest genetic risk and lowest quartiles of PM2.5.
Conclusions
Our findings highlight the importance of air pollution control in alleviating the burden of MD.
This study aims to evaluate the impact of low-carbohydrate diet, balanced dietary guidance and pharmacotherapy on weight loss among individuals with overweight or obesity over a period of 3 months. The study involves 339 individuals with overweight or obesity and received weight loss treatment at the Department of Clinical Nutrition at the Second Affiliated Hospital of Zhejiang University, School of Medicine, between 1 January 2020 and 31 December 2023. The primary outcome is the percentage weight loss. Among the studied patients, the majority chose low-carbohydrate diet as their primary treatment (168 (49·56 %)), followed by balanced dietary guidance (139 (41·00 %)) and pharmacotherapy (32 (9·44 %)). The total percentage weight loss for patients who were followed up for 1 month, 2 months and 3 months was 4·98 (3·04, 6·29) %, 7·93 (5·42, 7·93) % and 10·71 (7·74, 13·83) %, respectively. Multivariable logistic regression analysis identified low-carbohydrate diet as an independent factor associated with percentage weight loss of ≥ 3 % and ≥ 5 % at 1 month (OR = 0·461, P < 0·05; OR = 0·349, P < 0·001). The results showed that a low-carbohydrate diet was an effective weight loss strategy in the short term. However, its long-term effects were comparable to those observed with balanced dietary guidance and pharmacotherapy.
The liver has multiple functions such as detoxification, metabolism, synthesis and storage. Folate is a water-soluble vitamin B9, which participates in one-carbon transfer reactions, maintains methylation capacity and improves oxidative stress. Folic acid is a synthetic form commonly used as a dietary supplement. The liver is the main organ for storing and metabolising folate/folic acid, and the role of folate/folic acid in liver diseases has been widely studied. Deficiency of folate results in methylation capacity dysfunction and can induce liver disorders. However, adverse effects of excessive use of folic acid on the liver have also been reported. This review aims to explore the mechanism of folate/folic acid in different liver diseases, promote further research on folate/folic acid and contribute to its rational clinical application.
Paranosema locustae is an environmentally friendly parasitic predator with promising applications in locust control. In this study, transcriptome sequencing was conducted on gonadal tissues of Locusta migratoria males and females infected and uninfected with P. locustae at different developmental stages. A total of 18,635 differentially expressed genes (DEGs) were identified in female ovary tissue transcriptomes, with the highest number of DEGs observed at 1 day post-eclosion (7141). In male testis tissue transcriptomes, a total of 32,954 DEGs were identified, with the highest number observed at 9 days post-eclosion (11,245). Venn analysis revealed 25 common DEGs among female groups and 205 common DEGs among male groups. Gene ontology and Kyoto Encyclopaedia of Genes and Genome analyses indicated that DEGs were mainly enriched in basic metabolism such as amino acid metabolism, carbohydrate metabolism, lipid metabolism, and immune response processes. Protein–protein interaction analysis results indicated that L. migratoria regulates the expression of immune- and reproductive-related genes to meet the body's demands in different developmental stages after P. locustae infection. Immune- and reproductive-related genes in L. migratoria gonadal tissue were screened based on database annotation information and relevant literature. Genes such as Tsf, Hex1, Apolp-III, Serpin, Defense, Hsp70, Hsp90, JHBP, JHE, JHEH1, JHAMT, and VgR play important roles in the balance between immune response and reproduction in gonadal tissues. For transcriptome validation, Tsf, Hex1, and ApoLp-III were selected and verified by quantitative real-time polymerase chain reaction (qRT-PCR). Correlation analysis revealed that the qRT-PCR expression patterns were consistent with the RNA-Seq results. These findings contribute to further understanding the interaction mechanisms between locusts and P. locustae.
Previous animal studies found beneficial effects of choline and betaine on maternal glucose metabolism during pregnancy, but few human studies explored the association between choline or betaine intake and incident gestational diabetes mellitus (GDM). We aimed to explore the correlation of dietary choline or betaine intake with GDM risk among Chinese pregnant women. A total of 168 pregnant women with GDM cases and 375 healthy controls were enrolled at the Seventh People’s Hospital in Shanghai during their GDM screening at 24–28 gestational weeks. A validated semi-quantitative FFQ was used to estimate choline and betaine consumption through face-to-face interviews. An unconditional logistic regression model was adopted to examine OR and 95 % CI. Compared with the controls, those women with GDM incidence were likely to have higher pre-pregnancy BMI, be older, have more parities and have higher plasma TAG and lower plasma HDL-cholesterol. No significant correlation was observed between the consumption of choline or betaine and incident GDM (adjusted OR (95 % CI), 0·77 (0·41, 1·43) for choline; 0·80 (0·42, 1·52) for betaine). However, there was a significant interaction between betaine intake and parity on the risk of GDM (Pfor interaction = 0·01). Among those women with no parity history, there was a significantly inverse correlation between betaine intake and GDM risk (adjusted OR (95 % CI), 0·25 (0·06, 0·81)). These findings indicated that higher dietary betaine intake during pregnancy might be considered a protective factor for GDM among Chinese women with no parity history.
One species-general life history (LH) principle posits that challenging childhood environments are coupled with a fast or faster LH strategy and associated behaviors, while secure and stable childhood environments foster behaviors conducive to a slow or slower LH strategy. This coupling between environments and LH strategies is based on the assumption that individuals’ internal traits and states are independent of their external surroundings. In reality, individuals respond to external environmental conditions in alignment with their intrinsic vitality, encompassing both physical and mental states. The present study investigated attachment as an internal mental state, examining its role in mediating and moderating the association between external environmental adversity and fast LH strategies. A sample of 1169 adolescents (51% girls) from 9 countries was tracked over 10 years, starting from age 8. The results confirm both mediation and moderation and, for moderation, secure attachment nullified and insecure attachment maintained the environment-LH coupling. These findings suggest that attachment could act as an internal regulator, disrupting the contingent coupling between environmental adversity and a faster pace of life, consequently decelerating human LH.
A fixed-time control strategy based on adaptive event-triggered communication and force estimators is proposed for a class of teleoperation systems with time-varying delays and limited bandwidth. Two force estimators are designed to estimate the operator force and environment force instead of force sensors. With the position, velocity, force estimate signals, and triggering error, an adaptive event-triggered scheme is designed, which automatically adjusts the triggering thresholds to reduce the access frequency of the communication network. With the state information transmitted at the moment of event triggering while considering the time-varying delays, a fixed-time sliding mode controller is designed to achieve the position and force tracking. The stability of the system and the convergence of tracking error within a fixed time are mathematically proved. Experimental results indicate that the control strategy can significantly reduce the information transmission, enhance the bandwidth utilization, and ensure the convergence of tracking error within a fixed time for teleoperation systems.
The efficacy of steady large-amplitude blowing/suction on instability and transition control for a hypersonic flat plate boundary layer with Mach number 5.86 is investigated systematically. The influence of the blowing/suction flux and amplitude on instability is examined through direct numerical simulation and resolvent analysis. When a relatively small flux is used, the two-dimensional instability critical frequency that distinguishes the promotion/suppression mode effect closely aligns with the synchronisation frequency. For the oblique wave, as the spanwise wavenumber increases, the suppression effects would become weaker and the mode suppression bandwidth diminishes/increases in general in the blowing/suction control. Increasing the blowing/suction flux can effectively broaden the frequency bandwidth of disturbance suppression. The influence of amplitude on disturbance suppression is weak in a scenario of constant flux. To gain a deeper insight into disturbance suppression mechanism, momentum potential theory (MPT) and kinetic energy budget analysis are further employed in analysing disturbance evolution with and without control. When the disturbance is suppressed, the blowing induces the transport of certain acoustic components along the compression wave out of the boundary layer, whereas the suction does not. The velocity fluctuations are derived from the momentum fluctuations of the MPT. Compared with the momentum fluctuations, the evolutions indicated by each component's velocity fluctuations greatly facilitate the investigations of the acoustic nature of the second mode. The rapid variation of disturbance amplitude near the blowing is caused by the oscillations of the acoustic component and phase speed differences between vortical and thermal components. Kinetic energy budget analysis is performed to address the non-parallel effect of the boundary layer introduced by blowing/suction, which tends to suppress disturbances near the blowing. Moreover, viscous effects leading to energy dissipation are identified to be stronger in regions where the boundary layer is rapidly thickening. Finally, it is demonstrated that a flat plate boundary layer transition triggered by a random disturbance can be delayed by a blowing/suction combination control. The resolvent analysis further demonstrates that disturbances with frequencies that dominate the early transition stage are dampened in the controlled base flow.
Integrons are important genetic elements that allow easy acquisition and dissemination of antimicrobial resistance genes. Studies reporting occurrence of integrons in Staphylococcus aureus (S. aureus) isolated from bovine mastitis in large dairy farms across China are scarce. The aim of this study was to investigate the occurrence of class 1 integrons (intI1), antimicrobial resistance (AMR) and associated genes in S. aureus isolated from bovine mastitis and their associations. Minimum inhibitory concentrations (MICs) were determined to evaluate the AMR phenotypes, whereas PCR was carried out to assess the occurrence of AMR genes and intI1. In addition, index cluster analysis was used to estimate associations between AMR phenotype, genotype and intI1 in 103 isolates. Overall, 83% of S. aureus were intI1-positive and 5 types of gene cassettes were detected. Susceptibility against single antimicrobial agents ranged from 0% (erythromycin), 12% (ampicillin) and 16% (penicillin G) to 96% (gentamicin). Most isolates (64%) were intermediate-resistant against erythromycin, whereas resistance against ceftriaxone (22%), clindamycin (4%), cefotaxime (2%), tetracycline (1%) and ciprofloxacin (1%) were relatively uncommon. The predominant resistant gene was blaZ gene (n = 88, 85%) followed by tetD gene (n = 85, 83%). With an estimated prevalence of 12% of the mecA gene, methicillin-resistant S. aureus isolates had higher MIC50 and MIC90 for majority of antimicrobials than methicillin-susceptible S. aureus isolates. Presence of the ermC gene was associated with erythromycin resistance. Ampicillin, erythromycin and penicillin G resistance were associated with intI1. The data presented in our study indicated that class 1 integron-mediated resistance possibly plays an important role in dissemination of AMR in S. aureus isolated from bovine mastitis.
The prevalence of non-suicidal self-injury (NSSI) among adolescents underscores the importance of understanding the complex factors that drive this behaviour. Framed within broader constructs of emotional regulation theories, alexithymia and peer victimisation are thought to interact to influence NSSI behaviours.
Aim
This research addresses whether alexithymia and peer victimisation serve as risk factors for NSSI and, if so, how these factors interact with each other.
Method
This quantitative study analysed data from 605 adolescents, using a range of validated self-report measures including the Toronto Alexithymia Scale. Statistical analyses including one-way analysis of variance, multiple regression and structural equation modelling were employed to scrutinise the relationships among the variables.
Results
Alexithymia and peer victimisation significantly predicted NSSI behaviours. Specifically, the ‘difficulty in identifying feelings’ subscale of alexithymia emerged as a noteworthy predictor of NSSI (P < 0.001). Peer victimisation mediated the relationship between alexithymia and NSSI, explaining approximately 24.50% of alexithymia's total effect on NSSI. In addition, age was a significant predictor of NSSI, but gender and education years were not (P > 0.05). These relationships were found to be invariant across genders.
Conclusions
This study enriches our understanding of the interplay between alexithymia, peer victimisation and NSSI, particularly within the Chinese context. Its findings have significant implications for a rethinking of alexithymia's theoretical construct and interventions targeting emotional literacy and peer dynamics among adolescents. Future research could benefit from a longitudinal design to establish causality.
COVID-19 carriers experience psychological stresses and mental health issues such as varying degrees of stigma. The Social Impact Scale (SIS) can be used to measure the stigmatisation of COVID-19 carriers who experience such problems.
Aims
To evaluate the reliability and validity of the Chinese version of the SIS, and the association between stigma and depression among asymptomatic COVID-19 carriers in Shanghai, China.
Method
A total of 1283 asymptomatic COVID-19 carriers from Shanghai Ruijin Jiahe Fangcang Shelter Hospital were recruited, with a mean age of 39.64 ± 11.14 years (59.6% male). Participants completed questionnaires, including baseline information and psychological measurements, the SIS and Self-Rating Depression Scale. The psychometrics of the SIS and its association with depression were examined through exploratory factor analysis, confirmatory factor analysis and receiver operating characteristic analysis.
Results
The average participant SIS score was 42.66 ± 14.61 (range: 24–96) years. Analyses suggested the model had four factors: social rejection, financial insecurity, internalised shame and social isolation. The model fit statistics of the four-factor SIS were 0.913 for the comparative fit index, 0.902 for the Tucker–Lewis index and 0.088 for root-mean-square error of approximation. Standard estimated factor loadings ranged from 0.509 to 0.836. After controlling for demographic characteristics, the total score of the 23-item SIS predicted depression (odds ratio: 1.087, 95% CI 1.061–1.115; area under the curve: 0.84, 95% CI 0.788–0.892).
Conclusions
The Chinese version of the SIS showed good psychometric properties and can be used to assess the level of perceived stigma experienced by asymptomatic COVID-19 carriers.
We design a scheme for laser-inertial odometry and mapping with bundle adjustment (BA-LIOM), which can greatly mitigate the problem of undesired ground warping due to sparsity of laser scans and significantly reduce odometry drift. Specifically, an Inertial measurement unit (IMU)-assisted adaptive voxel map initialization algorithm is proposed and elaborately integrated with the existing framework LIO-SAM, allowing for accurate registration in the beginning of the localization and mapping process. In addition, to accommodate to fast-moving and structure-less scenarios, we design a tightly coupled odometry, which jointly optimizes both the IMU preintegration constraints and scan matching with adaptive voxel maps. The voxels (edge and plane, respectively) are updated with BA optimization. And then the accurate mapping result is obtained by performing local BA. The proposed BA-LIOM is thoroughly assessed using datasets collected from multiple platforms over a variety of environments. Experimental results show the superiority of BA-LIOM over the state-of-the-art methods in robustness and precision, especially for large-scale scenarios. BA-LIOM improves the accuracy of localization by $61\%$ and $73\%$ on the buildings and lawn datasets, respectively, and has a $29\%$ accuracy improvement over LIO-SAM on the KITTI datasets. A supplementary video can be accessed at https://youtu.be/5l4ZFhTc2sw.