We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To investigate the potential reservoir and mode of transmission of pandrug-resistant (PDR) Acinetobacter baumannii in a 7-day-old neonate who developed PDR A. baumannii bacteremia that was presumed to be the iceberg of a potential outbreak.
Design.
Outbreak investigation based on a program of prospective hospital-wide surveillance for nosocomial infection.
Setting.
A 24-bed neonatal intensive care unit in a 2,200-bed major teaching hospital in Taiwan that provides care for critically ill neonates born in this hospital and those transferred from other hospitals.
Interventions.
Samples from 33 healthcare workers' hands and 40 samples from the environment were cultured. Surveillance cultures of anal swab specimens and sputum samples were performed for neonates on admission to the neonatal intensive care unit and every 2 weeks until discharge. The PDR A. baumannii isolates, defined as isolates resistant to all currently available systemic antimicrobials except polymyxin B, were analyzed by pulsed-field gel electrophoresis. Control measures consisted of implementing contact isolation, reinforcing hand hygiene adherence, cohorting of nurses, and environmental cleaning.
Results.
One culture of an environmental sample and no cultures of samples from healthcare workers' hands grew PDR A. baumannii. The positive culture result involved a sample obtained from a ventilation tube used by the index patient. During the following 2 months, active surveillance identified PDR A. baumannii in 8 additional neonates, and isolates from 7 had the same electrokaryotype. Of the 9 neonates colonized or infected with PDR A. baumannii, 1 died from an unrelated condition. Reinforcement of infection control measures resulted in 100% adherence to proper hand hygiene protocol. The outbreak was stopped without compromising patient care.
Conclusions.
In the absence of environmental contamination, transient hand carriage by personnel who cared for neonates colonized or infected with PDR A. baumannii was suspected to be the mode of transmission. Vigilance, prompt intervention and strict adherence to hand hygiene protocol were the key factors that led to the successful control of this outbreak. Active surveillance appears to be an effective measure to identify potential transmitters and reservoirs of PDR A. baumannii.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.