We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Network approach has been applied to a wide variety of psychiatric disorders. The aim of the present study was to identify network structures of remitters and non-remitters in patients with first-episode psychosis (FEP) at baseline and the 6-month follow-up.
Methods
Participants (n = 252) from the Korean Early Psychosis Study (KEPS) were enrolled. They were classified as remitters or non-remitters using Andreasen's criteria. We estimated network structure with 10 symptoms (three symptoms from the Positive and Negative Syndrome Scale, one depressive symptom, and six symptoms related to schema and rumination) as nodes using a Gaussian graphical model. Global and local network metrics were compared within and between the networks over time.
Results
Global network metrics did not differ between the remitters and non-remitters at baseline or 6 months. However, the network structure and nodal strengths associated with positive-self and positive-others scores changed significantly in the remitters over time. Unique central symptoms for remitters and non-remitters were cognitive brooding and negative-self, respectively. The correlation stability coefficients for nodal strength were within the acceptable range.
Conclusion
Our findings indicate that network structure and some nodal strengths were more flexible in remitters. Negative-self could be an important target for therapeutic intervention.
Progenitors of Type Ib and Ic supernovae (SNe) are stripped envelope stars and provide important clues on the mass-loss history of massive stars. Direct observations of the progenitors before the supernova explosion would provide strong constraints on the exact nature of SN Ib/Ic progenitors. Given that stripped envelope massive stars can have an optically thick wind as in the case of Wolf-Rayet stars, the influence of the wind on the observational properties needs to be properly considered to correctly infer progenitor properties from pre-SN observations. Non-LTE stellar atmosphere models indicate that the optical brightness could be greatly enhanced with an optically thick wind because of lifting-up of the photosphere from the stellar surface to the wind matter, and line and free-free emissions. So far, only a limited number of SN Ib/Ic progenitor candidates have been reported, including iPTF13bvn, SN 2017ein and SN 2019yvr. We argue that these three candidates are a biased sample, being unusually bright in the optical compared to what is expected from typical SN Ib/Ic progenitors, and that mass-loss enhancement during the final evolutionary stage can explain their optical properties.
Delirium occur frequently in hospitalized patients. High-potency antipsychotic drugs have been used for the treatment of delirium; however, there is a risk of acute side effects. Therefore, atypical antipsychotic drugs could be used to the treatment of delirium.
The present study aimed to provide comparison of intramuscular injection of olanzapine and intramuscular injection of haloperidol for patients with delirium was conducted with a randomized, open prospective study.
Methods:
Sixty-two patients admitted at the Catholic University of Korea Kangnam St. Mary's hospital, Seoul, South Korea were enrolled in this study. They were diagnosed as delirium by two independent psychiatrists using DSM-IV-TR. the Delirium Rating Scale-revised-98(DRS-R-98) and clinical global impression-severity (CGI-S) were checked daily. the Simpson-Angus Rating Scale, the Barnes Akathisia Rating Scale and the Abnormal Involuntary Movement Scale were used for the assessment of side effects.
Results:
The DRS-R-98 and CGI-S scores were significantly decreased over time in both treatment groups without any significant group difference and time by the group interaction effect (F=28.35, P< 0.0001). Adverse events occurred lower in olanzapine group. both treatments were well tolerated and there were no serious adverse events occurred by intramuscular olanzapine or haloperidol.
Conclusions:
This study showed that either intramuscular olanzapine or intramuscular haloperidol would be effective and tolerable for treating delirium, however, olanzapine showed lower side effects than haloperidol. Adequately powered studies will be mandatory to draw any definite conclusion.
A CoCrFeNiMn high-entropy alloy (HEA), in the form of a face-centered cubic (fcc) solid solution, was processed by high-pressure torsion (HPT) to produce a nanocrystalline (nc) HEA. Significant grain refinement was achieved from the very early stage of HPT through 1/4 turn and an nc structure with an average grain size of ∼40 nm was successfully attained after 2 turns. The feasibility of significant microstructural changes was attributed to the occurrence of accelerated atomic diffusivity under the torsional stress during HPT. Nanoindentation experiments showed that the hardness increased significantly in the nc HEA during HPT processing and this was associated with additional grain refinement. The estimated values of the strain-rate sensitivity were maintained reasonably constant from the as-cast condition to the nc alloy after HPT through 2 turns, thereby demonstrating a preservation of plasticity in the HEA. In addition, a calculation of the activation volume suggested that the grain boundaries play an important role in the plastic deformation of the nc HEA where the flow mechanism is consistent with other nc metals. Transmission electron microscopy showed that, unlike conventional fcc nc metals, the nc HEA exhibits excellent microstructural stability under severe stress conditions.
This study aimed to investigate the influences of age, education, and gender on the two total scores (TS-I and TS-II) of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological assessment battery (CERAD-NP) and to provide normative information based on an analysis for a large number of elderly persons with a wide range of educational levels.
Methods:
In the study, 1,987 community-dwelling healthy volunteers (620 males and 1,367 females; 50–90 years of age; and zero to 25 years of education) were included. People with serious neurological, medical, and psychiatric disorders (including dementia) were excluded. All participants underwent the CERAD-NP assessment. TS-I was generated by summing raw scores from the CERAD-NP subtests, excluding Mini-Mental State Examination and Constructional Praxis (CP) recall subtests. TS-II was calculated by adding CP recall score to TS-I.
Results:
Both TS-I and TS-II were significantly influenced by demographic variables. Education accounted for the greatest proportion of score variance. Interaction effect between age and gender was found. Based on the results obtained, normative data of the CERAD-NP total scores were stratified by age (six overlapping tables), education (four strata), and gender.
Conclusions:
The normative information will be very useful for better interpretation of the CERAD-NP total scores in various clinical and research settings and for comparing individuals’ performance of the battery across countries.
It is controversial whether Borna disease virus (BDV) infects humans and causes psychiatric disorders.
Objectives:
The relationship between BDV infection and schizophrenia with deficit syndrome was investigated.
Study design:
Using the Schedule for the Deficit Syndrome, 62 schizophrenic in-patients were selected from three psychiatric hospitals. RNA was extracted from peripheral blood mononuclear cells and analyzed using nested reverse transcriptase-polymerase chain reaction with primers to detect BDV p24 and p40.
Results and conclusions:
BDV transcripts were not detected in samples from any of the 62 schizophrenic patients. These data do not support an etiologic association between BDV infection and the deficit form of schizophrenia.
Sesame (Sesamum indicum L.) is one of the oldest oil crops and is widely cultivated in Asia and Africa. The aim of this study was to assess the genetic diversity, phylogenetic relationships and population structure of 277 sesame core collection accessions collected from 15 countries in four different continents. A total of 158 alleles were detected among the sesame accessions, with the number varying from 3 to 25 alleles per locus and an average of 11.3. Polymorphism information content values ranged from 0.34 to 0.84, with an average of 0.568. These values indicated a high genetic diversity at 14 loci both among and within the populations. Of these, 44 genotype-specific alleles were identified in 12 of the 14 polymorphic simple sequence repeat markers. The core collection preserved a much higher level of genetic variation. Therefore, 10.1% was selected as the best sampling percentage from the whole collection when constructing the core collection. The 277 core collection accessions formed four robust clusters in the unweighted pair group method and the arithmetic averages (UPGMA) dendrogram, although the clustering did not indicate any clear division among the sesame accessions based on their geographical locations. Similar patterns were obtained using model-based structure analysis and country-based dendrograms, as some accessions situated geographically far apart were grouped together in the same cluster. The results of these analyses will increase our understanding of the genotype-specific alleles, genetic diversity and population structure of core collections, and the information can be used for the development of a future breeding strategy to improve sesame yield.
The numerical approach of Lee et al. [Trans. Korean Soc. Mech. Eng., A28, 816–825 (2004)] to spherical indentation technique for property evaluation of hyperelastic rubber is enhanced. The Yeoh model is adopted as the constitutive form of rubber material because it can express well large deformation and cover various deformation modes with a simple form. We first determine the friction coefficient between a rubber specimen and a spherical indenter in a practical viewpoint and perform finite element simulations for a deeper indentation depth than that selected by Lee et al. [Trans. Korean Soc. Mech. Eng., A28, 816–825 (2004)]. An optimal data acquisition spot is selected, which features sufficiently large strain energy density and negligible frictional effect. We improve then two normalized functions mapping an indentation load–displacement curve onto a strain energy density–invariant curve, the latter of which gives the Yeoh model constants. The enhanced spherical indentation approach successfully produces the rubber material properties with an average error of less than 5%. The validity of our developed approach is verified by experimental evaluation of material properties with three kinds of rubber materials.
Despite numerous previous studies, relationships between watershed land use and adjacent streams and rivers at various scales in Korea remain unclear. This study investigated the relationships between land uses and the physical, chemical, and biological characteristics of 720 sites of streams and rivers across the country. The land uses at two spatial scales, including a 1-km buffer and the base watershed management region (BWMR), were computed in a geographical information system (GIS) with a digital land use/land cover map. Characteristics of land uses at two spatial scales were then correlated with the monitored multidimensional characteristics of the streams and rivers. The results of this study indicate that land use types have significant effects on stream and river characteristics. Specifically, most characteristics were negatively correlated with the proportions of urban, rice paddy, agricultural, and bare soil areas and positively correlated with the amount of forest. The site-scale and BWMR-scale analyses suggest that BWMR land use patterns were more strongly related to ecological integrity than they were to site land use patterns. Improving our understanding of land use effects will largely depend on relating the results of site-specific studies that use similar response techniques and measures to evaluate ecological integrity. In addition, our results clearly indicate that the characteristics of streams and rivers are closely linked and that land use types differentially affect those characteristics. Thus, effective restoration and management for ecological integrity of lotic system should consider the physical, chemical, and biological factors in combination.
Conical indentation methods to determine residual stress are proposed by examining the finite element solutions based on the incremental plasticity theory. We first note that hardness depends on the magnitude and sign of residual stress and material properties and can change by up to 20% over a specific range of elastic tensile and compressive residual stress, although some prior indentation studies reported that hardness is hardly affected by residual stress. By analyzing the characteristics of conical indentation, we then select some normalized indentation parameters, which are free from the effect of indenter tip rounding. Adopting dimensional analysis, we present practical conical indentation methods for the evaluation of elastic/plastic equi- and nonequi-biaxial residual stresses. The validity of developed approaches is confirmed by applying them to the experimental evaluation of four-point bending stress.
A systematic study on the effect of sputtering deposition parameters on material properties of Al doped ZnO (ZnO:Al) films prepared by an in-line rf magnetron sputtering and on surface morphology of the films after wet etching process was carried out. For application to silicon thin film solar cells as a front electrode, the as-deposited films were surface-textured by a dilute HCl solution to improve the light scattering properties such as haze and angle resolved distribution of scattered light on the film surfaces. The microstructure of as-deposited films is affected significantly by the working pressure and film compactness decreases with increasing working pressure from 1.5 mTorr to 10 mTorr. High quality ZnO:Al films with electrical resistivity of 4.25 × 10-4 Ω cm and optical transmittance of 80% in a visible range are obtained at low working pressure of 1.5 mTorr and substrate temperature of 100℃. Crater-like surface morphologies are observed on the textured ZnO:Al films after wet etching. The size and shape of craters are closely dependent on the microstructure and film compactness of as-deposited films. Haze values of the textured ZnO:Al films are improved in a whole wavelength of 300 – 1100 nm compared to commercial SnO2:F films (Asahi U type) and incident light on the textured films is scattered effectively with 30° angle.
We report on the basic characteristics and gas sensing operation of density controlled single-walled carbon nanotube (SWCNT) thin films on poly(dimethyl siloxane) (PDMS) substrates The vacuum filteration and PDMS mold transfer method allowed the density of SWCNT distributed to have non-local uniformity. The optical transparency of the SWCNT thin films was inversely proportional to SWCNT density and conductivity. The flexible SWCNT thin film showed high mechanical stability with negligible change in conductance after being bent by 180o. We evaluated its gas sensing operation depending on SWCNT density and bias voltage. It was shown that lower SWCNT density thin films had higher sensitivity to NH3 gas, which may be due to higher exposed surface area for lower density SWCNT thin films. Also, we found that lower bias voltage devices showed faster recovery times. The results show that vacuum filteration and mold transfer method produced flexible SWCNT thin films that have stable mechanical and electrical characteristics and also stable gas sensing capabilities making them applicable to future flexible integrated sensors.
For the first time, we have taken into account the detailed systematic variation of horizontal-branch (HB) morphology with age and metallicity in our population synthesis models and they result that the integrated Hβ index is significantly affected by the presence of blue HB stars. As a matter of fact, due to the systematic HB morphology variation, it is found that Hβ does not monotonically decrease as metallicity increases at given ages, but shows a kind of wavy feature. According to our models, a systematic difference between the globular cluster system in the Milky Way Galaxy and that in NGC 1399 in the Hβ vs. Mg2 plane is explained if globular cluster systems in giant elliptical galaxies are a couple of billion years older, in the mean, than the Galactic counterpart.
We present our recent revision of model constructions for the horizontal-branch (HB) morphology of globular clusters, which suggests the HB morphology is more sensitive to age compared to our earlier models. We also present our high precision CCD photometry for the classic second parameter pair M3 and M13. The relative age dating based on this photometry indicates that M13 is indeed older than M3 by 1.7 Gyr. This is consistent with the age difference predicted from our new models, which provides a further support that the HB morphology is a reliable age indicator in most population II stellar systems.
Although a number of functional imaging studies are in agreement in suggesting orbitofrontal and subcortical hyperfunction in the pathophysiology of obsessive–compulsive disorder (OCD), the structural findings have been contradictory.
Aims
To investigate grey matter abnormalities in patients with OCD by employing a novel voxel-based analysis of magnetic resonance images.
Method
Statistical parametric mapping was utilised to compare segmented grey matter images from 25 patients with OCD with those from 25 matched controls.
Results
Increased regional grey matter density was found in multiple cortical areas, including the left orbitofrontal cortex, and in subcortical areas, including the thalamus. On the other hand, regions of reduction were confined to posterior parts of the brain, such as the left cuneus and the left cerebellum.
Conclusions
Increased grey matter density of frontal–subcortical circuits, consonant with the hypermetabolic findings from functional imaging studies, seems to exist in patients with OCD, and cerebellar dysfunction may be involved in the pathophysiology of OCD.
Amorphous silicon films were prepared by dc reactive magnetron sputtering under conditions approaching the phase transition to microcrystallinity. Using TEM imaging these films were found to contain clusters of 5 to 50 nm sized Si crystallites embedded in an amorphous silicon matrix. Photocapacitance and transient photocurrent sub-band-gap optical spectra of this material appear to consist of a superposition of a spectrum typical of amorphous silicon together with an optical transition, with a threshold near 1. 1eV, that exhibits a very large optical cross section. This transition arises from valence band electrons being optically inserted into empty levels lying within the amorphous silicon mobility gap. Using modulated photocurrent methods we have determined that these states also dominate the electron deep trapping in this material. We argue that these states arise from defects at the crystalline-amorphous boundary.
We have studied the degradation kinetics of undoped a-Si:H films which contain a significant fraction of silicon microcrystallites. The degradation rate is found to be exceptionally slow in the first stage of degradation, then the defect density follows the “normal” t1/3rate and finally saturates. We present a model which relates this abnormal kinetics to the microcrystallites which are embedded in the amorphous matrix.
The hydrogenation effect was studied in the fabrication of amorphous silicon thin film transistor using APCVD technique. The inverse staggered type a-Si TFTs were fabricated with the deposited a-Si and SiO2 films by the atmospheric pressure (AP) CVD. The field effect mobility of the fabricated a-Si TFT is 0.79 cm2/Vs and threshold voltage is 5.4V after post hydrogenation. These results can be applied to make low cost a-Si TFT array using an in-line APCVD system.
We have studied the preparation and device application of a-Si by atmospheric pressure CVD using disilane. The deposition rate of a-Si increases with the partial pressure of disilane and with the total pressure. The deposition rate of APCVD a-Si is, therefore, very high compared with LPCVD. The photosensitivity of APCVD a-Si is 104 at 100mW/cm2. We have made an inverse staggered type a-Si TFT using SiO2 as a gate insulator. The on/off current ratio and field effect mobility are 105 and 0.19cm2/Vs, respectively.
We studied the layer by layer deposition technique of a-Si:H film, where the hydrogen radicals are exposed between the deposition of each layer. The effects of each layer thickness and hydrogen radical exposure time on the electrical and optical properties were studied. With the decrease of the each layer thickness, more hydrogen is involved in the network if the structure is still amorphous, but the hydrogen content is very small for microcrystal Si formed by long exposure to hydrogen radicals in between the depositions of thin layers.