We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The application of molecularly-capped gold nanoparticles (1–5 nm) in catalysis (e.g., electrocatalytic oxidation of CO and methanol) requires a thorough understanding of the surface composition and structural properties. Gold nanoparticles consisting of metallic or alloy cores and organic encapsulating shells serve as an intriguing model system. One of the challenges for the catalytic application is the ability to manipulate the core and the shell properties in controllable ways. There is a need to understand the relative core-shell composition and the ability to remove the shell component under thermal treatment conditions. In this paper, we report results of a thermogravimetric analysis of the alkanethiolate monolayer-capped gold nanoparticles. This investigation is aimed at enhancing our understanding of the relative core-shell composition and thermal profiles.
This paper reports a study on the assembly of gold nanoparticles via a tetradentate organosulfur ligand, tetra[(methylthio)methyl] silane. We have characterized the evolution of the assembly from individual nanoparticles to spheres (30 ∼ 160 nm) of linked nanoparticles using UV-Visible, TEM, and AFM techniques. We have also demonstrated that the assemblies could be effectively disassembled via manipulating the ligand chemistry. Intriguing assembly-substrate interactions were observed, which could be related to interfacial hydrophobicity. Implications of these findings to the development of abilities in interfacial manipulation of the nanostructures are also discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.