We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We develop in this work a general version of paracontrolled calculus that allows to treat analytically within this paradigm a whole class of singular partial differential equations with the same efficiency as regularity structures. This work deals with the analytic side of the story and offers a toolkit for the study of such equations, under the form of a number of continuity results for some operators, while emphasizing the simple and systematic mechanics of computations within paracontrolled calculus, via the introduction of two model operations $\mathsf{E}$ and $\mathsf{F}$. We illustrate the efficiency of this elementary approach on the example of the generalized parabolic Anderson model equation
We provide an alternative algebraic and geometric approach to the results of [I. Bailleul, Probab. Theory Related Fields141 (2008) 283–329] describing the asymptotic behaviour of the relativistic diffusion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.