We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Changes in abundance and distribution of marine top predators can indicate environmental change or anthropogenic pressure requiring management response. Here, we used an extensive dataset (21 years) to conduct a spatial and temporal analysis of grey seal strandings in Cornwall and the Isles of Scilly, close to the southern edge of the breeding range of the species. A total of 2007 strandings were reported from 2000 to 2020, increasing by 474% from 35 to 201 individuals per year during this period. The continued rise in strandings was consistent across all life stages and timeframes (5, 10 and 20 years), underpinning the suggestion of increasing abundance in the region. The observed seasonality differed by life stage, coinciding with the increased presence of animals near the coast for key life phases such as breeding, moulting and pupping. Strandings are widely distributed across the coast of Cornwall and the Isles of Scilly; however, most strandings were recorded on the north coast of Cornwall (70%) where major pupping and haul out sites are found. Despite hosting several pupping and haul out sites, a small proportion was recorded on the Isles of Scilly (5%) where it is thought that strandings are particularly underreported. Describing baselines in magnitude of strandings and life-stage compositions across space and time allows future deviations in frequency, demographic composition or spatial distribution to be detected and investigated. We demonstrate the utility of long-term citizen science data to provide valuable and cost-effective information on the distribution and abundance of a highly mobile marine mammal.
Graeme Laurie’s notion of reflexive governance, rooted in learning from experiences as issues arise, reminds us that the future is built upon past lessons. This chapter looks to the past better to understand our present and future. It begins with the past, examining the complex interaction of law, ethics and science through the prism of three types of human rights: the rights of children and decisionally vulnerable adults, the right to benefit from scientific advancement, and the rights of future generations. It traces the maturation of each from humble beginnings to playing an increasingly central role in biomedical research policy-making. It then turns to the future, largely uncertain but nevertheless responding to the past and the present. It contends that the future of policy-making is partly in the debates spurred by advances in epigenomics and microbiomics, human heritable genome editing, and the Covid-19 pandemic. Each has put our policy-making legacy to the test, illustrating how new ethical paradigms build upon older ones. It concludes by reflecting on the role that biomedical research policy plays in ensuring that science serves the interests of humanity above all else.
When vaccination depends on injection, it is plausible that the blood-injection-injury cluster of fears may contribute to hesitancy. Our primary aim was to estimate in the UK adult population the proportion of COVID-19 vaccine hesitancy explained by blood-injection-injury fears.
Methods
In total, 15 014 UK adults, quota sampled to match the population for age, gender, ethnicity, income and region, took part (19 January–5 February 2021) in a non-probability online survey. The Oxford COVID-19 Vaccine Hesitancy Scale assessed intent to be vaccinated. Two scales (Specific Phobia Scale-blood-injection-injury phobia and Medical Fear Survey–injections and blood subscale) assessed blood-injection-injury fears. Four items from these scales were used to create a factor score specifically for injection fears.
Results
In total, 3927 (26.2%) screened positive for blood-injection-injury phobia. Individuals screening positive (22.0%) were more likely to report COVID-19 vaccine hesitancy compared to individuals screening negative (11.5%), odds ratio = 2.18, 95% confidence interval (CI) 1.97–2.40, p < 0.001. The population attributable fraction (PAF) indicated that if blood-injection-injury phobia were absent then this may prevent 11.5% of all instances of vaccine hesitancy, AF = 0.11; 95% CI 0.09–0.14, p < 0.001. COVID-19 vaccine hesitancy was associated with higher scores on the Specific Phobia Scale, r = 0.22, p < 0.001, Medical Fear Survey, r = 0.23, p = <0.001 and injection fears, r = 0.25, p < 0.001. Injection fears were higher in youth and in Black and Asian ethnic groups, and explained a small degree of why vaccine hesitancy is higher in these groups.
Conclusions
Across the adult population, blood-injection-injury fears may explain approximately 10% of cases of COVID-19 vaccine hesitancy. Addressing such fears will likely improve the effectiveness of vaccination programmes.
Our aim was to estimate provisional willingness to receive a coronavirus 2019 (COVID-19) vaccine, identify predictive socio-demographic factors, and, principally, determine potential causes in order to guide information provision.
Methods
A non-probability online survey was conducted (24th September−17th October 2020) with 5,114 UK adults, quota sampled to match the population for age, gender, ethnicity, income, and region. The Oxford COVID-19 vaccine hesitancy scale assessed intent to take an approved vaccine. Structural equation modelling estimated explanatory factor relationships.
Results
71.7% (n=3,667) were willing to be vaccinated, 16.6% (n=849) were very unsure, and 11.7% (n=598) were strongly hesitant. An excellent model fit (RMSEA=0.05/CFI=0.97/TLI=0.97), explaining 86% of variance in hesitancy, was provided by beliefs about the collective importance, efficacy, side-effects, and speed of development of a COVID-19 vaccine. A second model, with reasonable fit (RMSEA=0.03/CFI=0.93/TLI=0.92), explaining 32% of variance, highlighted two higher-order explanatory factors: ‘excessive mistrust’ (r=0.51), including conspiracy beliefs, negative views of doctors, and need for chaos, and ‘positive healthcare experiences’ (r=−0.48), including supportive doctor interactions and good NHS care. Hesitancy was associated with younger age, female gender, lower income, and ethnicity, but socio-demographic information explained little variance (9.8%). Hesitancy was associated with lower adherence to social distancing guidelines.
Conclusions
COVID-19 vaccine hesitancy is relatively evenly spread across the population. Willingness to take a vaccine is closely bound to recognition of the collective importance. Vaccine public information that highlights prosocial benefits may be especially effective. Factors such as conspiracy beliefs that foster mistrust and erode social cohesion will lower vaccine up-take.
Organic carbon (C) plays an essential role in the denitrification process as it supplies energy for N2O, N2 and CO2 producing reactions. The objectives of this study were to: (i) rank the reactivity of different C compounds found in manures based on their availability for denitrification and (ii) explore C-quality in different C sources based on their capacity to promote denitrification. Evaluation of different C-sources in promoting denitrification was conducted based on the molar ratio of CO2 production to NO3− reduction after incubation. Results of the first experiment (a 12-day investigation) showed that glucose and glucosamine were highly reactive C compounds with all applied NO3− being exhausted by day 3, and glucosamine had significantly high amount of NH4+-N present at end of the experiment. The glucose and glucosamine treatments resulted in significantly greater cumulative CO2 production, compared to the other treatments. In the second experiment (a 9-day investigation), all NO3− had been depleted by day 6 and 9 from acetic acid and glucose, respectively, and the greatest cumulative CO2 production was from acetic acid. The CO2 appearance to NO3− molar ratios revealed that glucose and glucosamine were compounds with highly available C in the first experiment. In the second experiment, the pig slurry and acetic acid were found to be C-sources that promoted potential denitrification. The application of slurry to soil results in the promotion of denitrification and this depends on the availability of the C compounds it contains. Understanding the relationship between C availability and denitrification potential is useful for developing denitrification mitigation strategies for organic soil amendments.
Mössbauer spectra of several smectites demonstrate the existence of at least three phases with distinct Fe populations: (i) a component with very low Fe content (< 1%), which shows slowly-relaxing paramagnetic hyperfine structure at both 4·2 K and 77 K; (ii) a component with intermediate Fe content (∼ 1–10%) which is seen as doublets in the spectra at 4·2 K, 77 K and ambient temperature; (iii) an Fe-rich phase (> 30% Fe), which shows magnetic ordering at 4·2 K and 77 K. These data are consistent with components (i) and (ii) corresponding to Fe incorporated in aluminosilicate structures from distinct phases, whereas (iii) is characteristic of an iron oxide phase, probably goethite in most cases. These conclusions are supported by EPR measurements which show magnetically-dilute Fe in more than one type of structural environment plus an additional component with magnetically-interacting ions.
The History, Electrocardiogram (ECG), Age, Risk Factors, and Troponin (HEART) score is a decision aid designed to risk stratify emergency department (ED) patients with acute chest pain. It has been validated for ED use, but it has yet to be evaluated in a prehospital setting.
Hypothesis
A prehospital modified HEART score can predict major adverse cardiac events (MACE) among undifferentiated chest pain patients transported to the ED.
Methods
A retrospective cohort study of patients with chest pain transported by two county-based Emergency Medical Service (EMS) agencies to a tertiary care center was conducted. Adults without ST-elevation myocardial infarction (STEMI) were included. Inter-facility transfers and those without a prehospital 12-lead ECG or an ED troponin measurement were excluded. Modified HEART scores were calculated by study investigators using a standardized data collection tool for each patient. All MACE (death, myocardial infarction [MI], or coronary revascularization) were determined by record review at 30 days. The sensitivity and negative predictive values (NPVs) for MACE at 30 days were calculated.
Results
Over the study period, 794 patients met inclusion criteria. A MACE at 30 days was present in 10.7% (85/794) of patients with 12 deaths (1.5%), 66 MIs (8.3%), and 12 coronary revascularizations without MI (1.5%). The modified HEART score identified 33.2% (264/794) of patients as low risk. Among low-risk patients, 1.9% (5/264) had MACE (two MIs and three revascularizations without MI). The sensitivity and NPV for 30-day MACE was 94.1% (95% CI, 86.8-98.1) and 98.1% (95% CI, 95.6-99.4), respectively.
Conclusions
Prehospital modified HEART scores have a high NPV for MACE at 30 days. A study in which prehospital providers prospectively apply this decision aid is warranted.
As the age of the soils in a chronosequence on the California coast increases, the difference between the magnetic susceptibility of eluvial and illuvial horizons increases, and the residual susceptibility after extraction with citrate-bicarbonate-dithionite (CBD) decreases. Enhanced susceptibility results from the conversion of nonferrimagnetic minerals to secondary ferrimagnetic forms (most likely maghemite) and the preferential accumulation of inherited and pedogenic magnetic minerals. Little enhancement occurs for pedons younger than 40,000 yr. By 124,000 yr, most of the magnetic susceptibility can be attributed to forms soluble in CBD. Magnetic susceptibility appears to vary systematically over time for three chronosequences from areas with mean annual precipitation ranging from 650 to 1500 mm yr−1. Magnetic susceptibility enhancement may be a useful parameter for estimating soil age in certain climates.
Increasing recognition of the extent to which nitrous oxide (N2O) contributes to climate change has resulted in greater demand to improve quantification of N2O emissions, identify emission sources and suggest mitigation options. Agriculture is by far the largest source and grasslands, occupying c. 0·22 of European agricultural land, are a major land-use within this sector. The application of mineral fertilizers to optimize pasture yields is a major source of N2O and with increasing pressure to increase agricultural productivity, options to quantify and reduce emissions whilst maintaining sufficient grassland for a given intensity of production are required. Identification of the source and extent of emissions will help to improve reporting in national inventories, with the most common approach using the IPCC emission factor (EF) default, where 0·01 of added nitrogen fertilizer is assumed to be emitted directly as N2O. The current experiment aimed to establish the suitability of applying this EF to fertilized Scottish grasslands and to identify variation in the EF depending on the application rate of ammonium nitrate (AN). Mitigation options to reduce N2O emissions were also investigated, including the use of urea fertilizer in place of AN, addition of a nitrification inhibitor dicyandiamide (DCD) and application of AN in smaller, more frequent doses. Nitrous oxide emissions were measured from a cut grassland in south-west Scotland from March 2011 to March 2012. Grass yield was also measured to establish the impact of mitigation options on grass production, along with soil and environmental variables to improve understanding of the controls on N2O emissions. A monotonic increase in annual cumulative N2O emissions was observed with increasing AN application rate. Emission factors ranging from 1·06–1·34% were measured for AN application rates between 80 and 320 kg N/ha, with a mean of 1·19%. A lack of any significant difference between these EFs indicates that use of a uniform EF is suitable over these application rates. The mean EF of 1·19% exceeds the IPCC default 1%, suggesting that use of the default value may underestimate emissions of AN-fertilizer-induced N2O loss from Scottish grasslands. The increase in emissions beyond an application rate of 320 kg N/ha produced an EF of 1·74%, significantly different to that from lower application rates and much greater than the 1% default. An EF of 0·89% for urea fertilizer and 0·59% for urea with DCD suggests that N2O quantification using the IPCC default EF will overestimate emissions for grasslands where these fertilizers are applied. Large rainfall shortly after fertilizer application appears to be the main trigger for N2O emissions, thus applicability of the 1% EF could vary and depend on the weather conditions at the time of fertilizer application.
Ongoing intensification and specialisation of livestock production lead to increasing volumes of manure to be managed, which are a source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). Net emissions of CH4 and N2O result from a multitude of microbial activities in the manure environment. Their relative importance depends not only on manure composition and local management practices with respect to treatment, storage and field application, but also on ambient climatic conditions. The diversity of livestock production systems, and their associated manure management, is discussed on the basis of four regional cases (Sub-Saharan Africa, Southeast Asia, China and Europe) with increasing levels of intensification and priorities with respect to nutrient management and environmental regulation. GHG mitigation options for production systems based on solid and liquid manure management are then presented, and potentials for positive and negative interactions between pollutants, and between management practices, are discussed. The diversity of manure properties and environmental conditions necessitate a modelling approach for improving estimates of GHG emissions, and for predicting effects of management changes for GHG mitigation, and requirements for such a model are discussed. Finally, we briefly discuss drivers for, and barriers against, introduction of GHG mitigation measures for livestock production. There is no conflict between efforts to improve food and feed production, and efforts to reduce GHG emissions from manure management. Growth in livestock populations are projected to occur mainly in intensive production systems where, for this and other reasons, the largest potentials for GHG mitigation may be found.
Two years of intense and often dramatic negotiations culminated in the signing of a Framework Convention on Climate Change at the Earth Summit in Rio de Janeiro, Brazil. This compelling book reconstructs the dynamics of those negotiations, based on eye-witness accounts. The main contributors, each a principal player in the drama, have been selected to reflect the perspectives of the most important interest groups and institutions involved in the negotiations, including the OECD, oil-importing developing nations, private industry and non-governmental organisations. These individual accounts are integrated into an edited volume that provides a multi-dimensional assessment of the negotiating process, focusing on the competitive and co-operative interactions among nations, regional alliances, international institutions, corporations and non-governmental organisations.
Reservoir storage projects are known to alter significantly the environmental settings in which they are established. Extensive data are required to assess quantitatively the physical effects of human interference with rivers. Methodologies must be developed to permit continual monitoring of such changes, so that environmental effects of storage projects may be considered in more integrated, comprehensive plans than hitherto for future river-development efforts.
This study documents stream-channel changes over a five-years period following reservoir completion at eight cross-sections on the main stream below a dam and on one tributary. Of eight main-stream sections, four are increasing in cross-sectional area, namely numbers one, five, six, and seven. Of these, the crosssectional area of numbers one and seven is increasing laterally and that of five and six is increasing vertically. The average annual degradation of sections five and six is 0.092 m over the study period, compared with an average of 0.031 m in the United States over the first 10–15 years after dam closure. Sections three, eight, and nine, are shitfing laterally without a crosssectional area increase, while of sections 2 and 4 the cross-sectional area remained largely unchanged.
Extraction of most of the sediment load by the new reservoir led to increased erosion of the stream channel below the dam. However, it is not always predictable whether the increased erosive power of released clearwater will induce the ongoing channel to erode its bed, widen its section, or cause the bed to move laterally. Nearly all of the nine Deer Creek study sections experienced one of these changes over the study period of five years.
In an experiment carried out in 1963 on the control of Glossina swynnertoni Aust. infesting open bushland in northern Tanganyika, 3 per cent, dieldrin or endosulfan was applied to certain of the resting sites of the flies. These had been determined by previous observations and consisted of the undersides of tree branches between 4 and 9 ft. from the ground, with diameters of 1 to 4 in. and inclined less than 35° from the horizontal. Eradication was achieved in an area of 35 sq. miles at a cost of £42 per sq. mile. In a subsidiary experiment, G. pallidipes Aust. infesting the narrow forest bordering a seasonal river was attacked by spraying the vegetation on the river bank up to a height of eight feet. Complete eradication was not attained, due, it is thought, to removal of the insecticide by heavy rain, so that some newly emerged flies escaped exposure to a lethal deposit. The flies were, however, eliminated from the greater part of the river at a cost of £12.5 per mile.
Vaporising mats are used to volatilise small amounts of pyrethroid to prevent mosquito nuisance within houses. A small absorbent mat containing pyrethroid is placed on a 5- to 6-W electric heater. The mat surface temperature is about 125°C. Pyrethroid is released for several hours at a slowly diminishing rate. In tests, no evidence of degradation of bioallethrin was obtained. Vapour from mats inhibited biting by female Aedes aegypti (L.) and caused knockdown and kill. A commercial mat containing 88 mg allethrin was as effective as a mosquito coil containing 0·25% allethrin. In laboratory-made mats, 40 mg bioallethrin or 19 mg S-bioallethrin gave equal or better action than allethrin. Additives, such as piperonyl butoxide, mineral oil or antioxidant slightly reduced the rate of emission of pyrethroid and diminished the bite inhibitory and knockdown effects.