We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Soluble Intercellular Adhesion Molecule-1 (sICAM-1) has emerged as an inflammatory biomarker of many essential functions. We investigated the level of sICAM-1 influenced by Clonorchis sinensis (C. sinensis) co-infection in chronic hepatitis B (CHB) patients to explore the degree of liver tissue inflammation and liver function damage after co-infection. The study included data from patients with C. sinensis mono-infection (n=27), hepatitis B virus (HBV) mono-infection (n=32), C. sinensis and HBV co-infection (n=24), post-hepatitis B liver cirrhosis (n=18), post-hepatitis B liver cirrhosis co-infected with C. sinensis (n=16), and healthy controls (n=39). The level of sICAM-1 was measured with specific enzyme-linked immunosorbent assay method. Compared to the healthy control group, all the experimental groups had significantly higher serum sICAM-1 levels. The levels of sICAM-1 in co-infected groups were significantly higher compared to the mono-infection groups and were positively correlated with the levels of glutamate aminotransferase (ALT) and aspartate aminotransferase (AST). Our research findings confirmed that co-infection could exacerbate liver tissue inflammation and liver function damage in patients, could raise the sICAM-1 level, and may lead to the chronicity of HBV infection. These results provide clues for pathological mechanism study and formulating treatment plans.
To examine the effectiveness of Self-Help Plus (SH+) as an intervention for alleviating stress levels and mental health problems among healthcare workers.
Methods
This was a prospective, two-arm, unblinded, parallel-designed randomised controlled trial. Participants were recruited at all levels of medical facilities within all municipal districts of Guangzhou. Eligible participants were adult healthcare workers experiencing psychological stress (10-item Perceived Stress Scale scores of ≥15) but without serious mental health problems or active suicidal ideation. A self-help psychological intervention developed by the World Health Organization in alleviating psychological stress and preventing the development of mental health problems. The primary outcome was psychological stress, assessed at the 3-month follow-up. Secondary outcomes were depression symptoms, anxiety symptoms, insomnia, positive affect (PA) and self-kindness assessed at the 3-month follow-up.
Results
Between November 2021 and April 2022, 270 participants were enrolled and randomly assigned to either SH+ (n = 135) or the control group (n = 135). The SH+ group had significantly lower stress at the 3-month follow-up (b = −1.23, 95% CI = −2.36, −0.10, p = 0.033) compared to the control group. The interaction effect indicated that the intervention effect in reducing stress differed over time (b = −0.89, 95% CI = −1.50, −0.27, p = 0.005). Analysis of the secondary outcomes suggested that SH+ led to statistically significant improvements in most of the secondary outcomes, including depression, insomnia, PA and self-kindness.
Conclusions
This is the first known randomised controlled trial ever conducted to improve stress and mental health problems among healthcare workers experiencing psychological stress in a low-resource setting. SH+ was found to be an effective strategy for alleviating psychological stress and reducing symptoms of common mental problems. SH+ has the potential to be scaled-up as a public health strategy to reduce the burden of mental health problems in healthcare workers exposed to high levels of stress.
Population-wide restrictions during the COVID-19 pandemic may create barriers to mental health diagnosis. This study aims to examine changes in the number of incident cases and the incidence rates of mental health diagnoses during the COVID-19 pandemic.
Methods
By using electronic health records from France, Germany, Italy, South Korea and the UK and claims data from the US, this study conducted interrupted time-series analyses to compare the monthly incident cases and the incidence of depressive disorders, anxiety disorders, alcohol misuse or dependence, substance misuse or dependence, bipolar disorders, personality disorders and psychoses diagnoses before (January 2017 to February 2020) and after (April 2020 to the latest available date of each database [up to November 2021]) the introduction of COVID-related restrictions.
Results
A total of 629,712,954 individuals were enrolled across nine databases. Following the introduction of restrictions, an immediate decline was observed in the number of incident cases of all mental health diagnoses in the US (rate ratios (RRs) ranged from 0.005 to 0.677) and in the incidence of all conditions in France, Germany, Italy and the US (RRs ranged from 0.002 to 0.422). In the UK, significant reductions were only observed in common mental illnesses. The number of incident cases and the incidence began to return to or exceed pre-pandemic levels in most countries from mid-2020 through 2021.
Conclusions
Healthcare providers should be prepared to deliver service adaptations to mitigate burdens directly or indirectly caused by delays in the diagnosis and treatment of mental health conditions.
The ground delay program (GDP) is a commonly used tool in air traffic management. Developing a departure flight delay prediction model based on GDP can aid airlines and control authorities in better flight planning and adjusting air traffic control strategies. A model that combines the improved sparrow search algorithm (ISSA) and Multilayer Perceptron (MLP) has been proposed to minimise prediction errors. The ISSA uses tent chaotic mapping, dynamic adaptive weights, and Levy flight strategy to enhance the algorithm’s accuracy for the sparrow search algorithm (SSA). The MLP model’s hyperparameters are optimised using the ISSA to improve the model’s prediction accuracy and generalisation performance. Experiments were performed using actual GDP-generated departure flight delay data and compared with other machine learning techniques and optimisation algorithms. The results of the experiments show that the mean absolute error (MAE) and root mean square error (RMSE) of the ISSA-MLP model are 16.8 and 24.2, respectively. These values are 5.61%, 6.3% and 1.8% higher in MAE and 4.4%, 5.1% and 2.5% higher in RMSE compared to SSA, particle swarm optimisation (PSO) and grey wolf optimisation (GWO). The ISSA-MLP model has been verified to have good predictive and practical value.
Little is known about strategies to implement new critical care practices in response to COVID-19. Moreover, the association between differing implementation climates and COVID-19 clinical outcomes has not been examined. The purpose of this study was to evaluate the relationship between implementation determinants and COVID-19 mortality rates.
Methods:
We used mixed methods guided by the Consolidated Framework for Implementation Research (CFIR). Semi-structured qualitative interviews were conducted with critical care leaders and analyzed to rate the influence of CFIR constructs on the implementation of new care practices. Qualitative and quantitative comparisons of CFIR construct ratings were performed between hospital groups with low- versus high-mortality rates.
Results:
We found associations between various implementation factors and clinical outcomes of critically ill COVID-19 patients. Three CFIR constructs (implementation climate, leadership engagement, and engaging staff) had both qualitative and statistically significant quantitative correlations with mortality outcomes. An implementation climate governed by a trial-and-error approach was correlated with high COVID-19 mortality, while leadership engagement and engaging staff were correlated with low mortality. Another three constructs (needs of patient; organizational incentives and rewards; and engaging implementation leaders) were qualitatively different across mortality outcome groups, but these differences were not statistically significant.
Conclusions:
Improving clinical outcomes during future public health emergencies will require reducing identified barriers associated with high mortality and harnessing salient facilitators associated with low mortality. Our findings suggest that collaborative and engaged leadership styles that promote the integration of new yet evidence-based critical care practices best support COVID-19 patients and contribute to lower mortality.
Since 2018, the radiocarbon laboratory of Lanzhou University has been equipped with a compact accelerator mass spectrometer—a 200-KV mini carbon dating system (MICADAS), together with an auto graphitization equipment (AGE III). The laboratory has for a long time prepared graphite targets for 14C dating of plant fossils, charcoal, bones, and bulk organic matter. Herein, we give an overview of the operating status and performance of the dating facility. The long-term measurements of the standard and blank samples indicated that the results for MICADAS in Lanzhou University were accurate and stable and of high sensitivity. Fifteen sets of organic materials collected from archaeological sites in northwest China were selected for an inter-comparison study involving the participation of four specialist laboratories. The 14C dating results for the homogenized archaeological samples from several of the laboratories showed a high degree of consensus. The long-term performance and inter-comparison data for MICADAS confirmed that the radiocarbon laboratory of Lanzhou University could provide stable and accurate 14C dating results. In this context, the 14C dating results for a number of key archaeological/environmental samples were validated.
We present the results of KVN Key Science Program (KSP) for evolved stars, which was launched in 2014. The first phase of KSP ended in June 2020 and the second phase started in October 2020. The goal of KSP is to study the physical characteristics of the evolved stars by observing the spatial distribution and temporal variability of the stellar masers at four frequency-bands (K, Q, W and D bands). The 22 GHz H2O maser is usually observed from the outer part of circumstellar envelopes compared to the 43, 86, 129 GHz SiO masers, thus the kinematic links between these regions can be studied by the multi-frequency simultaneous observations of KSP along the stellar pulsation cycles. This eventually enable us to study the enormous mass-loss rate of evolved stars, and the accumulated results from KSP are expected to shed light on the study of the late stage of the stellar evolution.
We report VLBI monitoring observations of the 22 GHz H2O masers toward the Mira variable BX Cam. Data from 37 epochs spanning ∼3 stellar pulsation periods were obtained between May 2018 and June 2021 with a time interval of 3–4 weeks. In particular, the VERA dual-beam system was used to measure the kinematics and parallaxes of the H2O maser features. The obtained parallax, 1.79±0.08 mas, is consistent with Gaia EDR3 and previous VLBI measurements. The position of the central star was estimated relied on Gaia EDR3 data and the center position of the 43 GHz SiO maser ring imaged with KVN. Analysis of the 3D maser kinematics revealed an expanding circumstellar envelope with a velocity of 13±4 km s−1 and significant spatial and velocity asymmetries. The H2O maser animation achieved by our dense monitoring program manifests the propagation of shock waves in the circumstellar envelope of BX Cam.
The BEBOP (Binaries Escorted By Orbiting Planets) survey is a search for circumbinary planets using the radial velocity spectrographs HARPS and SOPHIE, currently focusing on single-lined binaries with a mass ratio < 0.3. Circumbinary systems are an important testing ground for planet formation theories as the dynamically complex influence of the binary makes planet formation and survival more difficult. Here we present the results of the survey so far including: confirmed planets such as BEBOP-1c the first circumbinary planet detected in radial velocity; the status of our observations; and preliminary occurrence rates. We compare the early results of the radial velocity survey to the population of circumbinary planets discovered in transit, and suggest that there may be a population of inflated planets close to the inner binary which are detectable in transit but more difficult in radial velocity. Using time-lag tidal theory, we show that this inflation is unlikely caused by tides.
The effect of sheared E × B flow on the blob dynamics in the scrape-off layer (SOL) of HL-2A tokamak has been studied during the plasma current ramp-up in ohmically heated deuterium plasmas by the combination of poloidal and radial Langmuir probe arrays. The experimental results indicate that the SOL sheared E × B flow is substantially enhanced as the plasma current exceeds a certain value and the strong sheared E × B flow has the ability to slow the blob radial motion via stretching its poloidal correlation length. The locally accumulated blobs are suggested to be responsible for the increase of plasma density just outside the Last Closed Flux Surface (LCFS) observed in this experiment. The results presented here reveal the significant role played by the strong sheared E × B flow on the blob dynamics, which provides a potential method to control the SOL width by modifying the sheared E × B flow in future tokamak plasmas.
OBJECTIVES/GOALS: To determine if decellularized costal cartilage (DCC), which could theoretically be obtained “off the shelf,” would provide similar results to autologous cartilage grafts previously studied in this lab, thereby widening the application of our novel nipple engineering approach to all patients undergoing nipple reconstruction. METHODS/STUDY POPULATION: PLA scaffolds (diameter: 1.0 cm, height: 1.0 cm) were printed using a PRUSA 3D printer and sterilized. Lamb costal cartilage was minced (1 mm3) or zested (<0.2 mm3) and then decellularized. The quality of decellularization was assessed using DNA quantification and histological analysis. DCC was then packed into PLA scaffolds and implanted subcutaneously into immunocompetent Sprague Dawley rats using a CV flap technique. The constructs were explanted and evaluated up to 6 months after implantation. RESULTS/ANTICIPATED RESULTS: All nipple reconstructions showed well-preserved diameter and projection due to persistence of the external scaffolds at 1, 3, and 6 months. Mass and volume of engineered tissue was well-preserved over all timepoints. Compared to implantation values, engineered zested nipples demonstrated a 12% mass increase and a 22% volume increase at 6 months. Minced nipples illustrated a similar mass and volume gain with a 21% increase in mass and a 13% increase in volume at 6 months secondary to infiltration of fibrovascular tissue and growth through scaffold wall pores, respectively. Histologic analysis demonstrated a mild inflammatory infiltrate 1 month after implantation which was replaced by fibrovascular tissue by 3 months that remained stable through 6 months. The processed DCC structure remained unchanged over time. DISCUSSION/SIGNIFICANCE: Using acellular ovine xenograft within bioabsorbable scaffolds, we have engineered neonipples that maintain their volume for at least 6 months. DCC architecture is well-preserved with minimal evidence of immune-mediated degradation. By using DCC, this novel approach to nipple engineering may be applied to any patient requiring reconstruction.
To examine the association between adherence to plant-based diets and mortality.
Design:
Prospective study. We calculated a plant-based diet index (PDI) by assigning positive scores to plant foods and reverse scores to animal foods. We also created a healthful PDI (hPDI) and an unhealthful PDI (uPDI) by further separating the healthy plant foods from less-healthy plant foods.
Setting:
The VA Million Veteran Program.
Participants:
315 919 men and women aged 19–104 years who completed a FFQ at the baseline.
Results:
We documented 31 136 deaths during the follow-up. A higher PDI was significantly associated with lower total mortality (hazard ratio (HR) comparing extreme deciles = 0·75, 95 % CI: 0·71, 0·79, Ptrend < 0·001]. We observed an inverse association between hPDI and total mortality (HR comparing extreme deciles = 0·64, 95 % CI: 0·61, 0·68, Ptrend < 0·001), whereas uPDI was positively associated with total mortality (HR comparing extreme deciles = 1·41, 95 % CI: 1·33, 1·49, Ptrend < 0·001). Similar significant associations of PDI, hPDI and uPDI were also observed for CVD and cancer mortality. The associations between the PDI and total mortality were consistent among African and European American participants, and participants free from CVD and cancer and those who were diagnosed with major chronic disease at baseline.
Conclusions:
A greater adherence to a plant-based diet was associated with substantially lower total mortality in this large population of veterans. These findings support recommending plant-rich dietary patterns for the prevention of major chronic diseases.
Clinical high-risk states for psychosis (CHR) are associated with functional impairments and depressive disorders. A previous PRONIA study predicted social functioning in CHR and recent-onset depression (ROD) based on structural magnetic resonance imaging (sMRI) and clinical data. However, the combination of these domains did not lead to accurate role functioning prediction, calling for the investigation of additional risk dimensions. Role functioning may be more strongly associated with environmental adverse events than social functioning.
Aims
We aimed to predict role functioning in CHR, ROD and transdiagnostically, by adding environmental adverse events-related variables to clinical and sMRI data domains within the PRONIA sample.
Method
Baseline clinical, environmental and sMRI data collected in 92 CHR and 95 ROD samples were trained to predict lower versus higher follow-up role functioning, using support vector classification and mixed k-fold/leave-site-out cross-validation. We built separate predictions for each domain, created multimodal predictions and validated them in independent cohorts (74 CHR, 66 ROD).
Results
Models combining clinical and environmental data predicted role outcome in discovery and replication samples of CHR (balanced accuracies: 65.4% and 67.7%, respectively), ROD (balanced accuracies: 58.9% and 62.5%, respectively), and transdiagnostically (balanced accuracies: 62.4% and 68.2%, respectively). The most reliable environmental features for role outcome prediction were adult environmental adjustment, childhood trauma in CHR and childhood environmental adjustment in ROD.
Conclusions
Findings support the hypothesis that environmental variables inform role outcome prediction, highlight the existence of both transdiagnostic and syndrome-specific predictive environmental adverse events, and emphasise the importance of implementing real-world models by measuring multiple risk dimensions.
Modular coral-like fossils occur in thrombolitic reefal beds at two stratigraphic levels within the Lower Ordovician (Floian) Barbace Cove Member of the Boat Harbour Formation, in the St. George Group of western Newfoundland. They are here assigned to Reptamsassia n. gen.; R. divergens n. gen. n. sp. is present at both levels, whereas a comparatively small-module species, R. minuta n. gen. n. sp., is confined to the upper level. Reptamsassia n. gen. resembles the Ordovician genus Amsassia in its phacelocerioid structure, back-to-back walls of adjoining modules, module increase by longitudinal fission involving infoldings of the wall, tabula-like structures that are continuous with the vertical module wall, and calices with concave-up bottoms. The new genus is differentiated by its encrusting habit, modules with highly variable growth directions and shapes throughout skeletal growth, and modules that may separate slightly or diverge from one another following fission. Together, Amsassia and Reptamsassia n. gen. are considered to represent a distinct group of calcareous algae, the Amsassiaceae n. fam., which possibly belongs to the green algae. The Early Ordovician origination of Amsassia followed by Reptamsassia n. gen. contributed to the beginning of the rise in diversity on a global scale and in reefal settings during the Great Ordovician Biodiversification Event. Reptamsassia minuta n. gen. n. sp. was an obligate symbiont that colonized living areas on its host, R. divergens n. gen. n. sp., with isolated modules of R. divergens n. gen. n. sp. able to persist in the resulting intergrowth with R. minuta n. gen. n. sp. This is the earliest known symbiotic intergrowth of macroscopic modular species, exemplifying the development of ecologic specialization and ecosystem complexity in Early Ordovician reefs.
Mars exploration motivates the search for extraterrestrial life, the development of space technologies, and the design of human missions and habitations. Here, we seek new insights and pose unresolved questions relating to the natural history of Mars, habitability, robotic and human exploration, planetary protection, and the impacts on human society. Key observations and findings include:
– high escape rates of early Mars' atmosphere, including loss of water, impact present-day habitability;
– putative fossils on Mars will likely be ambiguous biomarkers for life;
– microbial contamination resulting from human habitation is unavoidable; and
– based on Mars' current planetary protection category, robotic payload(s) should characterize the local martian environment for any life-forms prior to human habitation.
Some of the outstanding questions are:
– which interpretation of the hemispheric dichotomy of the planet is correct;
– to what degree did deep-penetrating faults transport subsurface liquids to Mars' surface;
– in what abundance are carbonates formed by atmospheric processes;
– what properties of martian meteorites could be used to constrain their source locations;
– the origin(s) of organic macromolecules;
– was/is Mars inhabited;
– how can missions designed to uncover microbial activity in the subsurface eliminate potential false positives caused by microbial contaminants from Earth;
– how can we ensure that humans and microbes form a stable and benign biosphere; and
– should humans relate to putative extraterrestrial life from a biocentric viewpoint (preservation of all biology), or anthropocentric viewpoint of expanding habitation of space?
Studies of Mars' evolution can shed light on the habitability of extrasolar planets. In addition, Mars exploration can drive future policy developments and confirm (or put into question) the feasibility and/or extent of human habitability of space.
Modular coral-like fossils from Lower Ordovician (Tremadocian) thrombolitic mounds in the St. George Group of western Newfoundland were initially identified as Lichenaria and thought to include the earliest tabulate corals. They are here assigned to Amsassia terranovensis n. sp. and Amsassia? sp. A from the Watts Bight Formation, and A. diversa n. sp. and Amsassia? sp. B from the overlying Boat Harbour Formation. Amsassia terranovensis n. sp. and A. argentina from the Argentine Precordillera are the earliest representatives of the genus. Amsassia is considered to be a calcareous alga, possibly representing an extinct group of green algae. The genus originated and began to disperse in the Tremadocian, during the onset of the Great Ordovician Biodiversification Event, on the southern margin of Laurentia and the Cuyania Terrane. It inhabited small, shallow-marine reefal mounds constructed in association with microbes. The paleogeographic range of Amsassia expanded in the Middle Ordovician (Darriwilian) to include the Sino-Korean Block, as well as Laurentia, and its environmental range expanded to include non-reefal, open- and restricted-marine settings. Amsassia attained its greatest diversity and paleogeographic extent in the Late Ordovician (Sandbian–Katian), during the culmination of the Great Ordovician Biodiversification Event. Its range included the South China Block, Tarim Block, Kazakhstan, and Siberia, as well as the Sino-Korean Block and Laurentia, and its affinity for small microbial mounds continued during that time. In the latest Ordovician (Hirnantian), the diversity of Amsassia was reduced, its distribution was restricted to non-reefal environments in South China, and it finally disappeared during the end-Ordovician mass extinction.
An acute gastroenteritis (AGE) outbreak caused by a norovirus occurred at a hospital in Shanghai, China, was studied for molecular epidemiology, host susceptibility and serological roles. Rectal and environmental swabs, paired serum samples and saliva specimens were collected. Pathogens were detected by real-time polymerase chain reaction and DNA sequencing. Histo-blood group antigens (HBGA) phenotypes of saliva samples and their binding to norovirus protruding proteins were determined by enzyme-linked immunosorbent assay. The HBGA-binding interfaces and the surrounding region were analysed by the MegAlign program of DNAstar 7.1. Twenty-seven individuals in two care units were attacked with AGE at attack rates of 9.02 and 11.68%. Eighteen (78.2%) symptomatic and five (38.4%) asymptomatic individuals were GII.6/b norovirus positive. Saliva-based HBGA phenotyping showed that all symptomatic and asymptomatic cases belonged to A, B, AB or O secretors. Only four (16.7%) out of the 24 tested serum samples showed low blockade activity against HBGA-norovirus binding at the acute phase, whereas 11 (45.8%) samples at the convalescence stage showed seroconversion of such blockade. Specific blockade antibody in the population played an essential role in this norovirus epidemic. A wide HBGA-binding spectrum of GII.6 supports a need for continuous health attention and surveillance in different settings.