We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although neurocognitive dysfunction and physical performance are known to be impaired in patients with schizophrenia, evidence regarding the relationship between these two domains remains insufficient. Thus, we aimed to investigate the relationship between various physical performance domains and cognitive domains in individuals with schizophrenia, while considering other disorder-related clinical symptoms.
Methods.
Sixty patients with schizophrenia participated in the study. Cardiorespiratory fitness and functional mobility were evaluated using the step test and supine-to-standing (STS) test, respectively. Executive function and working memory were assessed using the Stroop task and Sternberg working memory (SWM) task, respectively. Clinical symptoms were evaluated using the Brief Psychiatric Rating Scale, Beck Depression Inventory, and State-Trait Anxiety Inventory. Multivariate analyses were performed to adjust for relevant covariates and identify predictive factors associated with neurocognition.
Results.
Multiple regression analysis revealed that the step test index was most strongly associated with reaction time in the Stroop task (β = 0.434, p = 0.001) and SWM task (β = 0.331, p = 0.026), while STS test time was most strongly associated with accuracy on the Stoop task (β=−0.418, p = 0.001) and SWM task (β=−0.383, p = 0.007). Total cholesterol levels were positively associated with Stroop task accuracy (β=−0.307, p = 0.018) after controlling for other clinical correlates. However, clinical symptoms were not associated with any variables in Stroop or SWM task.
Conclusions.
The present findings demonstrate the relationship between physical performance and neurocognition in patients with schizophrenia. Considering that these factors are modifiable, exercise intervention may help to improve cognitive symptoms in patients with schizophrenia, thereby leading to improvements in function and prognosis.
For decades, fructose intake has been recognised as an environmental risk for metabolic syndromes and diseases. Here we comprehensively examined the effects of fructose intake on mice liver transcriptomes. Fructose-supplemented water (34 %; w/v) was fed to both male and female C57BL/6N mice at their free will for 6 weeks, followed by hepatic transcriptomics analysis. Based on our criteria, differentially expressed genes (DEG) were selected and subjected to further computational analyses to predict key pathways and upstream regulator(s). Subsequently, predicted genes and pathways from the transcriptomics dataset were validated via quantitative RT-PCR analyses. As a result, we identified eighty-nine down-regulated and eighty-eight up-regulated mRNA in fructose-fed mice livers. These DEG were subjected to bioinformatics analysis tools in which DEG were mainly enriched in xenobiotic metabolic processes; further, in the Ingenuity Pathway Analysis software, it was suggested that the aryl hydrocarbon receptor (AhR) is an upstream regulator governing overall changes, while fructose suppresses the AhR signalling pathway. In our quantitative RT-PCR validation, we confirmed that fructose suppressed AhR signalling through modulating expressions of transcription factor (AhR nuclear translocator; Arnt) and upstream regulators (Ncor2, and Rb1). Altogether, we demonstrated that ad libitum fructose intake suppresses the canonical AhR signalling pathway in C57BL/6N mice liver. Based on our current observations, further studies are warranted, especially with regard to the effects of co-exposure to fructose on (1) other types of carcinogens and (2) inflammation-inducing agents (or even diets such as a high-fat diet), to find implications of fructose-induced AhR suppression.
Given that only a subgroup of patients with schizophrenia responds to first-line antipsychotic drugs, a key clinical question is what underlies treatment response. Observations that prefrontal activity correlates with striatal dopaminergic function, have led to the hypothesis that disrupted frontostriatal functional connectivity (FC) could be associated with altered dopaminergic function. Thus, the aim of this study was to investigate the relationship between frontostriatal FC and striatal dopamine synthesis capacity in patients with schizophrenia who had responded to first-line antipsychotic drug compared with those who had failed but responded to clozapine.
Methods
Twenty-four symptomatically stable patients with schizophrenia were recruited from Seoul National University Hospital, 12 of which responded to first-line antipsychotic drugs (first-line AP group) and 12 under clozapine (clozapine group), along with 12 matched healthy controls. All participants underwent resting-state functional magnetic resonance imaging and [18F]DOPA PET scans.
Results
No significant difference was found in the total PANSS score between the patient groups. Voxel-based analysis showed a significant correlation between frontal FC to the associative striatum and the influx rate constant of [18F]DOPA in the corresponding region in the first-line AP group. Region-of-interest analysis confirmed the result (control group: R2 = 0.019, p = 0.665; first-line AP group: R2 = 0.675, p < 0.001; clozapine group: R2 = 0.324, p = 0.054) and the correlation coefficients were significantly different between the groups.
Conclusions
The relationship between striatal dopamine synthesis capacity and frontostriatal FC is different between responders to first-line treatment and clozapine treatment in schizophrenia, indicating that a different pathophysiology could underlie schizophrenia in patients who respond to first-line treatments relative to those who do not.
To evaluate the appropriateness of the screening strategy for healthcare personnel (HCP) during a hospital-associated Middle East Respiratory Syndrome (MERS) outbreak, we performed a serologic investigation in 189 rRT-PCR–negative HCP exposed and assigned to MERS patients. Although 20%–25% of HCP experienced MERS-like symptoms, none of them showed seroconversion by plaque reduction neutralization test (PRNT).
A life-threatening cardiopulmonary resuscitation (CPR)-related injury can cause recurrent arrest after return of circulation. Such injuries are difficult to identify during resuscitation, and their contribution to failed resuscitation can be missed given the limitations of conventional CPR. Extracorporeal cardiopulmonary resuscitation (ECPR), increasingly being considered for selected patients with potentially reversible etiology of arrest, may identify previously occult CPR-related injuries by restoring arterial pressure and flow. Herein, we describe two cases of severe CPR-related injuries contributing to recurrent arrest. Each case had ECPR implemented within 60 minutes of the start of CPR. After the presumed cardiac etiology had been addressed with percutaneous coronary intervention, life-threatening cardiovascular injuries with recurrent arrest were noted, and resuscitative thoracotomy was performed under ECPR. One patient survived to hospital discharge.
ECPR may provide an opportunity to identify and correct severe resuscitation-related injuries causing recurrent arrest. Chest compression depth >6 cm, especially in older women, may contribute to these injuries.
The liquid phase plasma reduction method has been applied to prepare silver nanoparticles from a solution of silver nitrate (AgNO3) using a bipolar pulsed electrical discharge system. The excited states of atomic silver, hydrogen and oxygen as well as the molecular bands of hydroxyl radicals were detected in the emission spectra. As the discharge duration increased up to 10 min, silver particle peaks produced by surface plasmon absorption were observed around 430 nm. Both the particle size and the particle numbers were observed to increase with the length of the plasma treatment time and with the initial AgNO3 concentration. Spherical nanoparticles of about 5–20 nm in size were obtained with the discharging time of 5 min, whereas aggregates of nanoparticles of about 10–50 nm in size were mainly produced with the discharging time of 20 min. The cationic surfactant of cetyltrimethylammonium bromide (CTAB) added with the CTAB/AgNO3 molar ratio of 30% was shown to inhibit nanoparticle aggregation.
We investigated the relationship of oestrogen receptor (ER) status to the severity of depressive symptoms and quality of life (QOL) impairment in breast cancer patients.
Methods
Seventy-seven breast cancer patients with comorbid depression were evaluated with the Hamilton Depression Rating Scale (HAMD), the Clinical Global Impression-Severity of Illness (CGI-S) for depression, and the Functional Assessment of Cancer Therapy-Breast (FACT-B). ER status was determined using immunohistochemical analysis.
Results
The ER-positive group (n = 31) showed significantly higher scores compared with the ER-negative group (n = 46) on HAMD total (p = 0.04) and somatic anxiety factor (p = 0.004) scores as well as CGI-S score (p = 0.03). As for QOL measured with the FACT-B, a significantly higher score was found on the Functional Well-Being (FWB) subscale in the ER-positive group (p = 0.001). The relationships were further analysed using generalised linear models (GLM), after controlling for the influence of the current anti-oestrogen treatment. The analysis revealed that ER status was still significantly related to the FWB subscale score of the FACT-B (p = 0.04). However, the HAMD and CGI-S scores were no longer significantly related to ER status after the influence of anti-oestrogen treatment was controlled for.
Conclusion
These results suggest that ER status, which is a well-known biological prognostic factor in breast cancer, may be related to the severity of certain aspects of depressive symptoms or QOL impairment, implying a role of the ER in affective and behavioural regulation. However, anti-oestrogen treatments significantly influence these relationships.
We previously demonstrated that the chronic consumption of a high-fat diet (HFD) promotes lung and liver metastases of 4T1 mammary carcinoma cells in obesity-resistant BALB/c mice. To examine early transcriptional responses to tumour progression in the liver and lungs of HFD-fed mice, 4-week-old female BALB/c mice were divided into four groups: sham-injected, control diet (CD)-fed; sham-injected, HFD-fed (SH); 4T1 cell-injected, CD-fed (TC); 4T1 cell-injected, HFD-fed (TH). Following 16 weeks of either a CD or HFD, 4T1 cells were injected into the mammary fat pads of mice in the TC and TH groups and all mice were continuously fed identical diets. At 14 d post-injection, RNA was isolated from hepatic and pulmonary tissues for microarray analysis of mRNA expression. Functional annotation and core network analyses were conducted for the TH/SH Unique gene set. Inflammation in hepatic tissues and cell mitosis in pulmonary tissues were the most significant biological functions in the TH/SH Unique gene set. The biological core networks of the hepatic TH/SH Unique gene set were characterised as those genes involved in the activation of acute inflammatory responses (Orm1, Lbp, Hp and Cfb), disordered lipid metabolism and deregulated cell cycle progression. Networks of the pulmonary Unique gene set displayed the deregulation of cell cycle progression (Cdc20, Cdk1 and Bub1b). These HFD-influenced alterations may have led to favourable conditions for the formation of both pro-inflammatory and pro-mitotic microenvironments in the target organs that promote immune cell infiltration and differentiation, as well as the infiltration and proliferation of metastatic tumour cells.
Cerebral microbleeds (CMBs) are an increasingly common radiological finding in stroke, neurological and general medical practice. There are two published CMB rating scales that have been validated in hospital cohorts of stroke patients. The rating scales are the microbleed anatomical rating scale (MARS) and the brain observer micro bleed scale (BOMBS). This chapter considers the radiological criteria for defining CMBs and then discusses these standardized rating scales. The potential for automatically detecting and mapping CMBs in future is discussed briefly in the chapter. Mapping CMBs gives information on the burden of CMBs in different anatomical regions in the brain. Quantifying the number of CMBs may be relevant in exploring their relationship with other quantitative imaging or clinical data and for prognostic purposes. Although visual rating scales can improve the reliability of identifying and mapping CMBs, more sophisticated automated methods are under investigation.
The objectives of this study were to evaluate fish guild compositions and national river health using a multi-metric model of the Korean index of biological integrity using fishes (K-IBIF) in four major Korean watersheds along with water chemistry and habitat quality. Tolerant and omnivore fish species dominated all the watersheds, and the proportions of tolerance guilds and trophic guilds reflected water chemistry and habitat quality. The number of sensitive species and insectivore species had negative correlations (r < −0.42, P < 0.01) with chemical water quality (biological oxygen demand (BOD)), while tolerant species and omnivore species had positive correlation (r > 0.27, P < 0.05) with BOD values. Physical habit conditions, based on qualitative habitat evaluation index (QHEI) model, indicated a “good” condition (mean = 68.9; range = 45–105) in three watersheds, except for the Yeongsan River watershed. Values of QHEI were significantly correlated (R2 > 0.4, P < 0.01) with nitrogen and phosphorus levels in all watersheds, suggesting that habitat degradation is associated with eutrophication. Model values of K-IBIF in the watersheds averaged 18.2, indicating a “fair” condition, and about 37% of all observations in K-IBIF model values were judged as a “poor” health condition, indicating severe health impairment. Overall, our data suggest that degradation of the river health was due to a combined effect of chemical pollution and physical habitat modifications. This research provides valuable information on Korean river conservation and restoration in the future.
ZnO nanowire (NW) has potential applications for transparent electrodes, gas sensors, nanoscale optoelectronic devices, piezoresponse force microscopy (PFM) and field effect transistors. In general, we have evaluated the electrical properties of nanowire device from I-V curves measured mainly from the bundle-like ensemble structure of ZnO, not individual ZnO NWs. Most applications require details on the electrical mobility of ZnO NWs. Recently, the electrical transport of single ZnO NWs has been studied only from several devices fabricated by electron-beam lithography. However their I-V curves categorized into three types of resistance, i.e., symmetrical, rectifying and linear shapes due to contact problems between ZnO NWs and electrodes, results in contradictory.
In this paper, we manufactured single NW device using an individual ZnO nanowire, of which the junctions were made by Pt deposition using a focused ion beam (FIB), and performed RTA processes. The single ZnO NW device consists of ZnO-Pt, ZnO-Au and Au-Pt junctions. The electrical transport of the single ZnO NW device was investigated by directly measuring the electrical resistance using nano manipulators from cross-sectioned devices. The device showed a typical Ohmic contact in I-V curves and the resistance was decrease with the RTA temperature. The CL (Cathodoluminescence) and EDS in TEM (Energy dispersive spectroscopy in transmission electron microscopy) measurements were also performed to evaluate the crystallinity (defect level) and chemical composition at the center and edge of the cross-sectioned ZnO NWs. From the results, we found that lots of defects were stored at the surface of ZnO NW and impurities at the junction were abruptly reduced. Therefore, the electrical transport of the single ZnO NW device depends strongly on the crystallinity of the ZnO NW and the C content at the Pt junction. From the electrical transport measured on the cross sectioned device, the ZnO-Au junction acted as the fastest transport path among ZnO-Pt, ZnO-Au and Au-Pt junctions in the single ZnO NW device.
In this study, we synthesized Cu–Zr binary alloys reinforced with an ultrafine eutectic microstructure. The alloys consisted of alternating layers of a hard superlattice phase and a ductile Cu phase with a very fine interlamellar spacing of ∼60 nm. The superlattice phase enhanced the strength of the alloys while the laminated composite structure helped improve their plasticity, making their mechanical properties comparable to those of the earlier reported high strength alloys. This paper discusses the fundamental microstructural aspects that influence the mechanical properties of these alloys.
The condensation method to grow a strained SiGe layer-on-insulator (ε-SGOI) has attracted interests for the application of high speed complementary metal–oxide–semiconductor field-effect transistors (CMOSFETs) because of high quality properties and effective process cost. Although many reports presented its superiority in a device performance to bonding and dislocation sink technologies, the mechanism by which the condensation method produces ε-SGOI has also not been clearly explained and the surface properties have not been evaluated. Thus, we investigated condensation mechanism in detail by characterizing a surface property and Ge profile in SiGe layer. For the experiment, first, a SiGe layer on silicon-on-insulator layer was epitaxally grown at 550 °C, and three different oxidation thicknesses were grown at 950 °C, i.e., 40, 60, 90 nm. From our investigation results, we found that there are three steps in producing ε-SGOI. For the first step, by the 40-nm-thick oxidation, a diffusion of Ge atoms in SiGe layer into Si layer-on-insulator was generated and Ge atoms were segregated into only surface oxide. It was observed that Ge profile of SiGe layer was shown a less graded profile. And, in the second step with 60-nm-thick oxidation, Ge atoms in SiGe layer into Si layer-on-insulator was diffused further than a first step did and Ge atoms were segregated into surface oxide. It was observed that Si layer was shown a fully graded profile. Lastly, in the third step with 90-nm-thick oxidation, the diffusion of Ge atoms in SiGe layer into Si layer-on-insulator was finished completely and Ge atoms were segregated into both surface and buried oxides. It was confirm that Ge profile of SiGe layer was shown a Gaussian profile rather than a graded profile, and dislocation sink occurred. Therefore, our talk will focus on the explanation for the mechanism by which condensation method produces ε-SGOI via characterizing a surface property, SiGe thickness, a remained Si thickness on insulator, and Ge concentration in SiGe layer.
The dielectric and magnetic properties were investigated in Ta-substituted BiFeO3 polycrystalline ceramics synthesized by a solid-state reaction. The Ta substitution decreased the grain size by two orders of magnitude compared with that of unsubstituted ceramics and increased the electrical resistivity by 6 orders of magnitude. The high resistivity and low dielectric loss allowed the dielectric constant to be determined at room temperature. The magnetic hysteresis loops were observed in the Ta-substituted BiFeO3, and the appearance of ferromagnetism was closely associated with the distortion of the oxygen octahedra by the Ta substitution. The coupling between the electric and magnetic dipoles was examined by determining the changes of the dielectric constant with the external magnetic field.