To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We probe the atomic hydrogen (HI) emission from the host galaxies of fast radio bursts (FRBs) to investigate the emerging trend of disturbance and asymmetry in the population. Quadrupling the sample size, we detect 16 out of 17 new hosts in HI, with the single non-detection arising in a galaxy known to be transitioning towards quiescence. With respect to typical local Universe galaxies, FRB hosts are generally massive in HI (MHI > 109M⊙), which aligns with previous studies reporting that FRB hosts also tend to have high stellar masses and are star-forming. However, they span a broad range of other HI derived properties. Using visual inspection alongside various asymmetry metrics, we identify six unambiguously settled host galaxies, demonstrating for the first time that a disturbed HI morphology is not a universal feature of FRB host galaxies. However, we find another six that show clear signs of disturbance, one borderline case, and three which require deeper or more targeted observations to reach a conclusion; this brings the confirmed ratio of disturbed-to-settled FRB hosts to 11:6. Given that roughly a 1:1 ratio is expected for random background galaxies of similar type, our observed ratio yields a p-value of 0.222. Therefore, we conclude that contrary to earlier indications, there is no statistically significant excess of HI disturbance in this sample of FRB host galaxies with respect to the general galaxy population, and hence we find no evidence for a fundamental connection between FRB progenitor formation and merger-induced star formation activity.
Impulsive radio signals such as fast radio bursts (FRBs) are imprinted with the signatures of multi-path propagation through ionised media in the form of frequency-dependent temporal broadening of the pulse profile, commonly referred to as scattering. The dominant source of scattering for most FRBs is expected to be within their host galaxies, an assumption which can be tested by examining potential correlations between the scattering properties of the FRBs and global properties of their hosts. Using results from the Commensal Real-time ASKAP Fast Transient (CRAFT) survey, we investigate correlations across a range of host galaxy properties against attributes of the FRB that encode propagation effects: scattering timescale τ, polarisation fractions, and absolute Faraday rotation measure. From 21 host galaxy properties considered, we find three that are correlated with τ, including the stellar surface density (or compactness; Pearson p-value p = 0.002 and Spearman p = 0.010), the mass-weighted age (Spearman p-value p = 0.009), and a weaker correlation with the gas-phase metallicity (Spearman p = 0.017). Weakly significant correlations are also found with Hα equivalent widths and stellar gravitational potential. From 10,000 trials of reshuffled datasets, we expect 2 strong Spearman correlations only 2% of the time, and three weaker correlations in 6.6% of cases. Compact host galaxies may have more ionised content which scatters the FRB further. Compact galaxies were also found to correlate with gas-phase metallicity in our sample, while HII regions along the line-of-sight are also a potential contributing factor. No correlation is seen with host galaxy inclination, which weakens the case for an inclination bias, as previously suggested for samples of localised FRBs. A strong (p = 0.002) correlation is found for absolute rotation measure with optical disc axis ratio b/a; greater rotation measures are seen for edge-on host galaxies. Further high-time resolution FRB detections, coupled with localisation and detailed follow-up on their host galaxies, are necessary to corroborate these initial findings and shed further light into the FRB mechanism.
Invasive non-native species proceed through the Invasion Process upon introduction to a new location, with stages comprising establishment, growth, spread, and invasive impact. High fecundity, driven by fast growth, short lifespan, and a long reproduction period, can lead to high population densities, facilitating stage progression. The Asian date mussel (Arcuatula senhousia) is a marine intertidal–subtidal species, recently established in the UK. Given its potential to impact ecosystem services in Northern Europe, understanding the Invasion Process stage it has reached is imperative for assessing potential invasiveness and informing management. Therefore, population parameters of subtidal A. senhousia in the UK were evaluated from April 2021 to March 2022 to assess invasion stage. Specimens were collected (n = 1,029) via dredging and processed for condition index, gonadosomatic index, gonad index, length-frequency distribution, and electronic length-frequency analyses. While densities were low (<1 individuals per m2), maximum lifespan was high (23 months) and growth rate was high (1.8 mm per month), relative to other populations within the species’ global range. Results confirmed June to October spawning as previously reported in the UK and France but also evidenced secondary spawning (in November) for the first time in Northern Europe. Successful recruitment from primary and secondary spawning in 2020 was also apparent. Findings indicate A. senhousia has reached the Growth stage, and that further spread within the UK and Northern Europe is likely. Climate change will likely increase larval survivorship and individual and population fecundity, facilitating progression to invasive impact, potentially within the next decade.
Punctuated equilibria argue for intervals of long-term net stasis and comparatively abrupt change in the morphology of individual species lineages resulting from the process of allopatric speciation as recorded in the stratigraphic and fossil record. The concept of coordinated stasis extends punctuated equilibria to posit that not only individual species, but groups of coexisting lineages within a basin, display concurrent morphological and ecological stability over the same extended intervals of geologic time (105 to 106 yr). These blocks of stability termed ecological–evolutionary subunits (EESUs) are separated by shorter-lived (on the order of 103 to 104 yr) episodes of change characterized by varying combinations of speciation, extinction, immigration, and emigration. The result is a pattern of evolutionary and ecological stasis and change that is coincident and highly punctuational.
Here, we assess the connections among environment, evolution, and ecology by documenting patterns of stability, geographic extent, and synchronous turnover during medium-scale bioevents in the Middle Devonian of the eastern United States, and we briefly compare these with patterns of EESUs across the Late Ordovician mass extinction (LOME) based on ongoing work. We quantify the geographic extent and stability of faunas originally documented in the Appalachian Basin and identify their likely places of origin and refugia during turnovers. Faunas are geographically widespread during times of stability and border comparably stable faunas in adjacent provinces. During geologically brief intervals, assemblages display near-synchronous shifts involving local extirpation/extinction and coordinated migration of biogeographic boundaries over very long distances. Allopatric speciation in small, locally isolated populations along the edges of basins during brief windows of dramatically altered environmental conditions is more consistent with the geological record, emphasizes the role of environment and biogeography in driving evolutionary change, and confirms the prevalence of punctuated equilibria.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
The Mazon Creek Lagerstätte (Moscovian Stage, late Carboniferous Period; Illinois, USA) captures a diverse view of ecosystems in delta-influenced coastal settings through exceptional preservation of soft tissues in siderite concretions. The generally accepted paradigm of the Mazon Creek biota has been that of an inferred paleoenvironmental divide between what have been termed the Braidwood and Essex assemblages, wherein the former represents a freshwater ecosystem with terrestrial input and the latter a marine-influenced prodelta setting with abundant cnidarians, bivalves, worm phyla, and diverse arthropods. Here, we revisit the paleoecology of the Mazon Creek biota by analyzing data from nearly 300,000 concretions from more than 270 locations with complementary multivariate ordinations. Our results show the Braidwood assemblage as a legitimate shoreward community and provide evidence for further subdivision of the Essex assemblage into two distinct subassemblages, termed here the Will-Essex and Kankakee-Essex. The Will-Essex represents a benthos dominated by clams and trace fossils along the transition between nearshore and offshore deposits. The Kankakee-Essex is dominated by cnidarians, presenting an ecosystem approaching the geographic margin of this taphonomic window. These new insights also allow a refined taphonomic model, wherein recalcitrant tissues of Braidwood organisms were subject to rapid burial rates, while organisms of the Essex assemblage typically had more labile tissues and were subject to slower burial rates. Consequently, we hypothesize that the Braidwood fossils should record more complete preservation than the Essex, which was exposed for longer periods of aerobic decomposition. This is supported by a higher proportion of non-fossiliferous concretions in the Essex than in the Braidwood.
Multicenter clinical trials are essential for evaluating interventions but often face significant challenges in study design, site coordination, participant recruitment, and regulatory compliance. To address these issues, the National Institutes of Health’s National Center for Advancing Translational Sciences established the Trial Innovation Network (TIN). The TIN offers a scientific consultation process, providing access to clinical trial and disease experts who provide input and recommendations throughout the trial’s duration, at no cost to investigators. This approach aims to improve trial design, accelerate implementation, foster interdisciplinary teamwork, and spur innovations that enhance multicenter trial quality and efficiency. The TIN leverages resources of the Clinical and Translational Science Awards (CTSA) program, complementing local capabilities at the investigator’s institution. The Initial Consultation process focuses on the study’s scientific premise, design, site development, recruitment and retention strategies, funding feasibility, and other support areas. As of 6/1/2024, the TIN has provided 431 Initial Consultations to increase efficiency and accelerate trial implementation by delivering customized support and tailored recommendations. Across a range of clinical trials, the TIN has developed standardized, streamlined, and adaptable processes. We describe these processes, provide operational metrics, and include a set of lessons learned for consideration by other trial support and innovation networks.
The First Large Absorption Survey in H i (FLASH) is a large-area radio survey for neutral hydrogen in and around galaxies in the intermediate redshift range $0.4\lt z\lt1.0$, using the 21-cm H i absorption line as a probe of cold neutral gas. The survey uses the ASKAP radio telescope and will cover 24,000 deg$^2$ of sky over the next five years. FLASH breaks new ground in two ways – it is the first large H i absorption survey to be carried out without any optical preselection of targets, and we use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data products from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are public and available online. In this paper, we describe the FLASH spectral-line and continuum data products and discuss the quality of the H i spectra and the completeness of our automated line search. Finally, we present a set of 30 new H i absorption lines that were robustly detected in the Pilot Surveys, almost doubling the number of known H i absorption systems at $0.4\lt z\lt1$. The detected lines span a wide range in H i optical depth, including three lines with a peak optical depth $\tau\gt1$, and appear to be a mixture of intervening and associated systems. Interestingly, around two-thirds of the lines found in this untargeted sample are detected against sources with a peaked-spectrum radio continuum, which are only a minor (5–20%) fraction of the overall radio-source population. The detection rate for H i absorption lines in the Pilot Surveys (0.3 to 0.5 lines per 40 deg$^2$ ASKAP field) is a factor of two below the expected value. One possible reason for this is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper in this series will discuss the host galaxies of the H i absorption systems identified here.
We present the Evolutionary Map of the Universe (EMU) survey conducted with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU aims to deliver the touchstone radio atlas of the southern hemisphere. We introduce EMU and review its science drivers and key science goals, updated and tailored to the current ASKAP five-year survey plan. The development of the survey strategy and planned sky coverage is presented, along with the operational aspects of the survey and associated data analysis, together with a selection of diagnostics demonstrating the imaging quality and data characteristics. We give a general description of the value-added data pipeline and data products before concluding with a discussion of links to other surveys and projects and an outline of EMU’s legacy value.
We present the first results from a new backend on the Australian Square Kilometre Array Pathfinder, the Commensal Realtime ASKAP Fast Transient COherent (CRACO) upgrade. CRACO records millisecond time resolution visibility data, and searches for dispersed fast transient signals including fast radio bursts (FRB), pulsars, and ultra-long period objects (ULPO). With the visibility data, CRACO can localise the transient events to arcsecond-level precision after the detection. Here, we describe the CRACO system and report the result from a sky survey carried out by CRACO at 110-ms resolution during its commissioning phase. During the survey, CRACO detected two FRBs (including one discovered solely with CRACO, FRB 20231027A), reported more precise localisations for four pulsars, discovered two new RRATs, and detected one known ULPO, GPM J1839 $-$10, through its sub-pulse structure. We present a sensitivity calibration of CRACO, finding that it achieves the expected sensitivity of 11.6 Jy ms to bursts of 110 ms duration or less. CRACO is currently running at a 13.8 ms time resolution and aims at a 1.7 ms time resolution before the end of 2024. The planned CRACO has an expected sensitivity of 1.5 Jy ms to bursts of 1.7 ms duration or less and can detect $10\times$ more FRBs than the current CRAFT incoherent sum system (i.e. 0.5 $-$2 localised FRBs per day), enabling us to better constrain the models for FRBs and use them as cosmological probes.
With wide-field phased array feed technology, the Australian Square Kilometre Array Pathfinder (ASKAP) is ideally suited to search for seemingly rare radio transient sources that are difficult to discover previous-generation narrow-field telescopes. The Commensal Real-time ASKAP Fast Transient (CRAFT) Survey Science Project has developed instrumentation to continuously search for fast radio transients (duration $\lesssim$ 1 s) with ASKAP, with a particular focus on finding and localising fast radio bursts (FRBs). Since 2018, the CRAFT survey has been searching for FRBs and other fast transients by incoherently adding the intensities received by individual ASKAP antennas, and then correcting for the impact of frequency dispersion on these short-duration signals in the resultant incoherent sum (ICS) in real time. This low-latency detection enables the triggering of voltage buffers, which facilitates the localisation of the transient source and the study of spectro-polarimetric properties at high time resolution. Here we report the sample of 43 FRBs discovered in this CRAFT/ICS survey to date. This includes 22 FRBs that had not previously been reported: 16 FRBs localised by ASKAP to $\lesssim 1$ arcsec and 6 FRBs localised to $\sim 10$ arcmin. Of the new arcsecond-localised FRBs, we have identified and characterised host galaxies (and measured redshifts) for 11. The median of all 30 measured host redshifts from the survey to date is $z=0.23$. We summarise results from the searches, in particular those contributing to our understanding of the burst progenitors and emission mechanisms, and on the use of bursts as probes of intervening media. We conclude by foreshadowing future FRB surveys with ASKAP using a coherent detection system that is currently being commissioned. This will increase the burst detection rate by a factor of approximately ten and also the distance to which ASKAP can localise FRBs.
An estimated 129000 cases of Lyme borreliosis (LB) are reported annually in Europe. In 2022, we conducted a representative web-based survey of 28034 persons aged 18–65 years old in 20 European countries to describe tick and LB risk exposures and perceptions. Nearly all respondents (95.0%) were aware of ticks (range, 90.4% in the UK to 98.8% in Estonia). Among those aware of ticks, most (85.1%) were also aware of LB (range, 70.3% in Switzerland to 97.0% in Lithuania). Overall, 8.3% of respondents reported a past LB diagnosis (range, 3.0% in Romania to 13.8% in Sweden). Respondents spent a weekly median of 7 (interquartile range [IQR] 3–14) hours in green spaces at home and 9 (IQR 4–16) hours away from home during April–November. The most common tick prevention measures always or often used were checking for ticks (44.8%) and wearing protective clothing (40.2%). This large multicountry survey provided needed data that can be used to design targeted LB prevention programmes in Europe.
Accurate diagnosis of bipolar disorder (BPD) is difficult in clinical practice, with an average delay between symptom onset and diagnosis of about 7 years. A depressive episode often precedes the first manic episode, making it difficult to distinguish BPD from unipolar major depressive disorder (MDD).
Aims
We use genome-wide association analyses (GWAS) to identify differential genetic factors and to develop predictors based on polygenic risk scores (PRS) that may aid early differential diagnosis.
Method
Based on individual genotypes from case–control cohorts of BPD and MDD shared through the Psychiatric Genomics Consortium, we compile case–case–control cohorts, applying a careful quality control procedure. In a resulting cohort of 51 149 individuals (15 532 BPD patients, 12 920 MDD patients and 22 697 controls), we perform a variety of GWAS and PRS analyses.
Results
Although our GWAS is not well powered to identify genome-wide significant loci, we find significant chip heritability and demonstrate the ability of the resulting PRS to distinguish BPD from MDD, including BPD cases with depressive onset (BPD-D). We replicate our PRS findings in an independent Danish cohort (iPSYCH 2015, N = 25 966). We observe strong genetic correlation between our case–case GWAS and that of case–control BPD.
Conclusions
We find that MDD and BPD, including BPD-D are genetically distinct. Our findings support that controls, MDD and BPD patients primarily lie on a continuum of genetic risk. Future studies with larger and richer samples will likely yield a better understanding of these findings and enable the development of better genetic predictors distinguishing BPD and, importantly, BPD-D from MDD.
We examine the energy distribution of the fast radio burst (FRB) population using a well-defined sample of 63 FRBs from the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope, 28 of which are localised to a host galaxy. We apply the luminosity-volume ($V/V_{\mathrm{max}}$) test to examine the distribution of these transient sources, accounting for cosmological and instrumental effects, and determine the energy distribution for the sampled population over the redshift range $0.01 \lesssim z \lesssim 1.02$. We find the distribution between $10^{23}$ and $10^{26}$ J Hz$^{-1}$ to be consistent with both a pure power-law with differential slope $\gamma=-1.96 \pm 0.15$, and a Schechter function with $\gamma = -1.82 \pm 0.12$ and downturn energy $E_\mathrm{max} \sim 6.3 \, \times 10^{25}$ J Hz$^{-1}$. We identify systematic effects which currently limit our ability to probe the luminosity function outside this range and give a prescription for their treatment. Finally, we find that with the current dataset, we are unable to distinguish between the evolutionary and spectral models considered in this work.
Fast radio burst (FRB) science primarily revolves around two facets: the origin of these bursts and their use in cosmological studies. This work follows from previous redshift–dispersion measure (z–DM) analyses in which we model instrumental biases and simultaneously fit population parameters and cosmological parameters to the observed population of FRBs. This sheds light on both the progenitors of FRBs and cosmological questions. Previously, we have completed similar analyses with data from the Australian Square Kilometer Array Pathfinder (ASKAP) and the Murriyang (Parkes) Multibeam system. In this manuscript, we use 119 FRBs with 29 associated redshifts by additionally modelling the Deep Synoptic Array (DSA) and the Five-hundred-metre Aperture Spherical radio Telescope (FAST). We also invoke a Markov chain Monte Carlo (MCMC) sampler and implement uncertainty in the Galactic DM contributions. The latter leads to larger uncertainties in derived model parameters than previous estimates despite the additional data and indicate that precise measurements of DM$_\textrm{ISM}$ will be important in the future. We provide refined constraints on FRB population parameters and derive a new constraint on the minimum FRB energy of log $E_{\mathrm{min}}$(erg)=39.47$^{+0.54}_{-1.28}$ which is significantly higher than bursts detected from strong repeaters. This result likely indicates a low-energy turnover in the luminosity function or may alternatively suggest that strong repeaters have a different luminosity function to single bursts. We also predict that FAST will detect 25–41% of their FRBs at $z \gtrsim 2$ and DSA will detect 2–12% of their FRBs at $z \gtrsim 1$.
Sometimes patients and clinicians don’t agree and there is conflict. Many people prefer to avoid conflict, however working through it allows us to discuss our differences of opinion, explore the options, and come up with an agreement that we all can live with. Good communication skills can help shift the focus from “Who’s right?” to “What’s our shared interest?” This roadmap is different as it is about how you find your path amidst conflict. Start by noticing there is a disagreement. Prepare yourself by pausing, being curious, and assuming positive intent. Invite the other person’s perspective and listen to their story, emotion, and what it means to their sense of self. Identify what is at the root of the conflict and if possible, articulate it as a shared interest. Brainstorm to address the shared interest, and look for options that address everyone’s goals. Remember that conflicts occur because people care deeply, which means that resolving the conflict will take time and effort. Even in instances where it is not possible to agree, skillful communication can allow for graceful disagreement.
Conflict with our colleagues is stressful and evokes strong emotion, yet handled well can improve outcomes and relationships and enhance collaboration. There are issues of hierarchy, power, and respect. Similar to dealing with conflict with patients is the need to establish a safe space, practice deep listening, and earn trust. Being open to exploring the breadth of the problem, both parties perspectives, your role in the conflict, how you feel about events, and what it means to you will help you approach the situation with a more open mind. Keeping a focus on improving the situation and relationship rather than solely on being right will help maintain calm. The roadmap for conflict with colleagues includes noticing when conflict is bubbling up, preparing your approach instead of jumping in reactively, starting softly to avoid provoking defensiveness, inviting the other person’s perspective before you share yours, using neutral language to reframe emotionally charged issues, acknowledging the emotion of the situation (rather than handling your colleague’s emotions directly), and finding a path forward that addresses both parties’ concerns, creating new options where needed.