We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to utilise graph theory to explore the functional brain networks in individuals with tic disorders and to investigate resting-state functional connectivity changes in critical brain regions associated with tic disorders.
Methods:
Participants comprised individuals with tic disorders and age-matched healthy controls, ranging from 6 to 18 years old, all recruited from Korea University Guro Hospital. We ensured a medication-naïve cohort by excluding participants exposed to psychotropic medications for at least three weeks prior to the study. Data included structural and resting-state functional MRI scans, analysed with the CONN-fMRI Functional Connectivity toolbox v20b. The analysis included 22 patients (18 males, 4 females) and 26 controls (14 males, 12 females).
Results:
Significantly increased global efficiency was observed in the left inferior frontal gyrus pars opercularis among tic disorder patients compared to controls. Furthermore, this region displayed enhanced resting-state functional connectivity with its right counterpart in patients versus controls.
Conclusion:
The inferior frontal gyrus pars opercularis, known for its inhibitory role, may reflect adaptive functional adjustments in response to tic symptoms. Increased hubness of the inferior frontal gyrus pars opercularis possibly represents functional adjustments in response to tic symptoms. The identified brain region with increased efficiency and connectivity presents a promising avenue for further research into tic expression and control mechanisms.
Cancer is a life-changing experience, and side effects from treatment can make it difficult for survivors to return to their pre-cancer “normal life.” We explored the “new normal” and barriers to achieving it among lung cancer survivors who underwent surgery.
Methods
Semi-structured interviews were conducted with 32 recurrence-free non–small cell lung cancer survivors. We asked survivors how life had changed; how they defined the “new normal”; barriers that prevent them from achieving a “normal” life; and unmet needs or support for normalcy. Thematic analysis was performed.
Results
Defining “new normal” subjectively depends on an individual’s expectation of recovery: (1) being able to do what they want without pain or discomfort; (2) being able to do activities they could accomplish before their surgery; and (3) being able to work, earn money, and support their family. We found that (1) persistent symptoms, (2) fear of cancer recurrence, (3) high expectations in recovery, and (4) psychosocial stress and guilty feelings were barriers to achieving a “new normal.” The needs and support for normalcy were information on expected trajectories, postoperative management, and support from family and society.
Significance of results
Survivors defined the “new normal” differently, depending on their expectations for recovery. Informing survivors about the “new normal” so they could expect possible changes and set realistic goals for their life after cancer. Health professionals need to communicate with survivors about expectations for “normality” from the beginning of treatment, and it should be included in comprehensive survivorship care.
Prognostic heterogeneity in early psychosis patients yields significant difficulties in determining the degree and duration of early intervention; this heterogeneity highlights the need for prognostic biomarkers. Although mismatch negativity (MMN) has been widely studied across early phases of psychotic disorders, its potential as a common prognostic biomarker in early periods, such as clinical high risk (CHR) for psychosis and first-episode psychosis (FEP), has not been fully studied.
Methods
A total of 104 FEP patients, 102 CHR individuals, and 107 healthy controls (HCs) participated in baseline MMN recording. Clinical outcomes were assessed; 17 FEP patients were treatment resistant, 73 FEP patients were nonresistant, 56 CHR individuals were nonremitters (15 transitioned to a psychotic disorder), and 22 CHR subjects were remitters. Baseline MMN amplitudes were compared across clinical outcome groups and tested for utility prognostic biomarkers using binary logistic regression.
Results
MMN amplitudes were greatest in HCs, intermediate in CHR subjects, and smallest in FEP patients. In the clinical outcome groups, MMN amplitudes were reduced from the baseline in both FEP and CHR patients with poor prognostic trajectories. Reduced baseline MMN amplitudes were a significant predictor of later treatment resistance in FEP patients [Exp(β) = 2.100, 95% confidence interval (CI) 1.104–3.993, p = 0.024] and nonremission in CHR individuals [Exp(β) = 1.898, 95% CI 1.065–3.374, p = 0.030].
Conclusions
These findings suggest that MMN could be used as a common prognostic biomarker across early psychosis periods, which will aid clinical decisions for early intervention.
Over the past two decades, early detection and early intervention in psychosis have become essential goals of psychiatry. However, clinical impressions are insufficient for predicting psychosis outcomes in clinical high-risk (CHR) individuals; a more rigorous and objective model is needed. This study aims to develop and internally validate a model for predicting the transition to psychosis within 10 years.
Methods
Two hundred and eight help-seeking individuals who fulfilled the CHR criteria were enrolled from the prospective, naturalistic cohort program for CHR at the Seoul Youth Clinic (SYC). The least absolute shrinkage and selection operator (LASSO)-penalized Cox regression was used to develop a predictive model for a psychotic transition. We performed k-means clustering and survival analysis to stratify the risk of psychosis.
Results
The predictive model, which includes clinical and cognitive variables, identified the following six baseline variables as important predictors: 1-year percentage decrease in the Global Assessment of Functioning score, IQ, California Verbal Learning Test score, Strange Stories test score, and scores in two domains of the Social Functioning Scale. The predictive model showed a cross-validated Harrell's C-index of 0.78 and identified three subclusters with significantly different risk levels.
Conclusions
Overall, our predictive model showed a predictive ability and could facilitate a personalized therapeutic approach to different risks in high-risk individuals.
Firefighters are routinely exposed to various traumatic events and often experience a range of trauma-related symptoms. Although these repeated traumatic exposures rarely progress to the development of post-traumatic stress disorder, firefighters are still considered to be a vulnerable population with regard to trauma.
Aims
To investigate how the human brain responds to or compensates for the repeated experience of traumatic stress.
Method
We included 98 healthy firefighters with repeated traumatic experiences but without any diagnosis of mental illness and 98 non-firefighter healthy individuals without any history of trauma. Functional connectivity within the fear circuitry, which consists of the dorsal anterior cingulate cortex, insula, amygdala, hippocampus and ventromedial prefrontal cortex (vmPFC), was examined using resting-state functional magnetic resonance imaging. Trauma-related symptoms were evaluated using the Impact of Event Scale – Revised.
Results
The firefighter group had greater functional connectivity between the insula and several regions of the fear circuitry including the bilateral amygdalae, bilateral hippocampi and vmPFC as compared with healthy individuals. In the firefighter group, stronger insula–amygdala connectivity was associated with greater severity of trauma-related symptoms (β = 0.36, P = 0.005), whereas higher insula–vmPFC connectivity was related to milder symptoms in response to repeated trauma (β = −0.28, P = 0.01).
Conclusions
The current findings suggest an active involvement of insular functional connectivity in response to repeated traumatic stress. Functional connectivity of the insula in relation to the amygdala and vmPFC may be potential pathways that underlie the risk for and resilience to repeated traumatic stress, respectively.
A vertebrate burrow-bearing layer of late Pleistocene age is commonly found at many Paleolithic archaeological sites in Korea. The burrows are straight to slightly curved in horizontal (plan) view and gently inclined in lateral (sectional) view. They are interpreted as having been produced by rodent-like mammals based on their size and architecture. The significance of such burrow-bearing layers as a characteristic stratigraphic marker unit is demonstrated by high burrow abundance, consistent stratigraphic position, lack of stratigraphic recurrence at these sites, and widespread geographic extent. Three dating methods, tephrochronology, radiocarbon, and OSL dating, were used to infer the age of these burrow-bearing layers. The dating results indicate that they were formed between ca. 40,000 and 25,000 yr (MIS 3−2), and this suggests that this layer can be used as a stratigraphic time-marker in late Pleistocene paleosol sequences for this region.
Cerebral white matter hyperintensities (WMH) are prevalent incident findings on brain MRI scans among elderly people and have been consistently implicated in cognitive dysfunction. However, differential roles of WMH by region in cognitive function are still unclear. The aim of this study was to ascertain the differential role of regional WMH in predicting progression from mild cognitive impairment (MCI) to different subtypes of dementia.
Methods:
Participants were recruited from the Clinical Research Center for Dementia of South Korea (CREDOS) study. A total of 622 participants with MCI diagnoses at baseline and follow-up evaluations were included for the analysis. Initial MRI scans were rated for WMH on a visual rating scale developed for the CREDOS. Differential effects of regional WMH in predicting incident dementia were evaluated using the Cox proportional hazards model.
Results:
Of the 622 participants with MCI at baseline, 139 patients (22.3%) converted to all-cause dementia over a median of 14.3 (range 6.0–36.5) months. Severe periventricular WMH (PWMH) predicted incident all-cause dementia (Hazard ratio (HR) 2.22; 95% confidence interval (CI) 1.43–3.43) and Alzheimer's disease (AD) (HR 1.86; 95% CI 1.12–3.07). Subcortical vascular dementia (SVD) was predicted by both PWMH (HR 16.14; 95% CI 1.97–132.06) and DWMH (HR 8.77; 95% CI 1.77–43.49) in more severe form (≥ 10 mm).
Conclusions:
WMH differentially predict dementia by region and severity. Our findings suggest that PWMH may play an independent role in the pathogenesis of dementia, especially in AD.
Cultivated soybeans [Glycinemax (L.) Merr.] have various flower colours such as dark purple, purple, light purple, pink, magenta, near white and white. About one-third of the soybean accessions in the United States Department of Agriculture – Germplasm Resource Information Network (USDA-GRIN) Soybean Germplasm Collections have white flowers and are the second dominant accessions after the purple-flowered accessions. Earlier studies have shown that the w1 recessive allele of the W1 gene encoding flavonoid 3′,5′-hydroxylase produces white flowers. In the present study, we aimed to understand why the white-flowered accessions have become abundant among the cultivated soybeans and what their genetic and regional origin is. For this purpose, 99 landraces with white flowers and 39 landraces with purple flowers from eight Asian countries and Russia were analysed with regard to the nucleotide sequences of the W1 locus. We not only found that the w1 alleles of the 99 white-flowered landraces were identical to those of the white-flowered Williams 82, but also found that these w1 alleles displayed no polymorphism at all. By carrying out a phylogenetic analysis, we were able to identify a group with W1 alleles from which the w1 allele might have diverged.
The allelic variations at glutenin loci could significantly affect the bread baking quality, and specific glutenin alleles might be closely associated with greater gluten strength, which, in turn, is related to superior bread baking quality. In this study, allelic variations at Glu-1, Glu-A3 and Glu-B3 loci were evaluated in 222 Korean wheat landraces using gene-specific polymerase chain reaction (PCR) markers. Ten alleles were identified at Glu-1 loci. Glu-A1c, Glu-B1b, and Glu-D1a or Glu-D1f alleles were predominantly found at the respective loci and their frequencies were 86.5, 87.8 and 96.9 %, respectively. Seven Korean wheat landraces carried the Glu-D1d allele, and only one Korean wheat landrace (IT173162) achieved 10 points for the Glu-1 score. Fifteen alleles were identified at Glu-A3 and Glu-B3 loci; Glu-A3c and Glu-B3d or Glu-B3i alleles were commonly found at the respective loci and their frequencies were 77.0, 33.3 and 37.8 %, respectively. Glu-B3 alleles exhibited the highest genetic diversity than other alleles, while Glu-B1 and Glu-A1 alleles exhibited the lowest genetic diversity than other alleles. Twenty Korean wheat landraces had the Glu-A3d and Glu-B3b, Glu-B3d, Glu-B3f, Glu-B3g or Glu-B3i alleles, which were correlated with superior bread baking quality. Among these wheat lines, two (IT59787 and IT236544) carried the Glu-D1d allele.
Whether an association exists between cerebral microbleeds (CMBs) and functional recovery after ischemic stroke is unclear. We aimed to evaluate the association between CMBs and functional outcome after acute ischemic stroke.
Methods
Consecutive patients with acute stroke were enrolled, and all patients were stratified into good and poor functional outcome groups at discharge and 6 months after ischemic stroke by using a modified Rankin Scale score. Cardiovascular risk factors, CMBs, and white matter hyperintensities were compared between these two outcome groups. Logistic regression analysis was used to estimate the risk of poor functional outcomes.
Results
A total of 225 patients were enrolled, 121 of whom were classified as having a good functional outcome at discharge and 142 as having a good 6-month functional outcome. The presence of CMBs was associated with a poor functional outcome at discharge [CMBs (+) patients in poor vs. good functional group; 48.1% vs. 30.6%; p=0.007] and 6 months [53.0% vs. 30.3%; p=0.001]. After adjustment for confounding factors, only the presence of infratentorial CMBs was associated with a poor functional outcome at discharge and 6 months. The poor functional outcome group had more CMBs than the good outcome group at 6 months.
Conclusions
Infratentorial cerebral microbleeds were significantly associated with worse functional outcomes not only in the early phase of ischemic stroke but also in the chronic phase. These findings suggest that the presence of infratentorial CMBs can predict poor functional outcome after acute ischemic stroke.
Major depressive disorder (MDD) is closely related to stress reactions and serotonin probably underpins the pathophysiology of MDD. Alterations of the hypothalamic-pituitary-adrenal axis at the gene level have reciprocal consequences on serotonin neurotransmission. Glucocorticoid receptor (GR) polymorphisms affect glucocorticoid sensitivity, which is associated with cortisol feedback effects. Therefore, we hypothesised that GR polymorphisms are associated with the susceptibility to MDD and predict the treatment response.
Method:
Ninety-six subjects with a minimum score of 17 on the 21-item Hamilton Depression Scale (HAMD) at baseline were enrolled into the present study. The genotypes of GR (N363S, ER22/23EK, Bcl1, and TthIII1 polymorphisms) were analysed. The HAMD score was again measured after 1, 2, 4 and 8 weeks of antidepressant treatment to detect whether the therapeutic effects differed with the GR genotype.
Results:
Our subjects carried no N363S or ER22/23EK genetic polymorphisms and three types of Bcl1 and TthIII1 genetic polymorphisms. The C/C genotype and C allele at Bcl1 polymorphism were more frequent in MDD patients than in normal controls (p < 0.01 and p = 0.01, respectively). The genotype distributions did not differ significantly between responders and non-responders.
Conclusion:
These results suggest that GR polymorphism cannot predict the therapeutic response after antidepressant administration. However, GR polymorphism (Bcl1) might play a role in the pathophysiology of MDD. Future studies should check this finding in larger populations with different characteristics.
The incidence of restless legs syndrome (RLS) is presumed to be higher among people with schizophrenia who take antipsychotic medication, most of which blocks the dopamine D2 receptor. The purpose of this study was to determine whether the G-protein β3 subunit (GNB3) C825T polymorphism is associated with antipsychotic-induced RLS in schizophrenia.
Methods:
We examined 178 Korean patients with schizophrenia. All of the subjects were evaluated using the diagnostic criteria of the International Restless Legs Syndrome Study Group and the International Restless Legs Scale. Genotyping was performed for the C825T polymorphism in the GNB3 gene.
Results:
The genotype distribution did not differ significantly between antipsychotic-induced RLS patients and patients who had no-RLS symptoms (χ2 = 4.30, p = 0.116). The genotypes of the C825T single-nucleotide polymorphism (SNP) were classified into two groups: C+ (CC and CT genotypes) and C– (TT genotype). The presence of the C allele (C+) was associated with an increased likelihood of RLS (χ2 = 4.14, p = 0.042; odds ratio = 2.56, 95% confidence interval = 1.02–6.47).
Conclusions:
These results suggest that the GNB3 C825T SNP is associated with RLS in schizophrenia. However, confirming this association requires future larger scale studies in which the effects of medication are strictly controlled.
To evaluate the reliability and validity of a standardized measure of healthcare personnel (HCP) influenza vaccination.
Setting.
Acute care hospitals, long-term care facilities, ambulatory surgery centers, physician practices, and dialysis centers from 3 US jurisdictions.
Participants.
Staff from 96 healthcare facilities randomly sampled from 234 facilities that completed pilot testing to assess the feasibility of the measure.
Methods.
Reliability was assessed by comparing agreement between facility staff and project staff on the classification of HCP numerator (vaccinated at facility, vaccinated elsewhere, contraindicated, declined) and denominator (employees, credentialed nonemployees, other nonemployees) categories. To assess validity, facility staff completed a series of case studies to evaluate how closely classification of HCP groups aligned with the measure's specifications. In a modified Delphi process, experts rated face validity of the proposed measure elements on a Likert-type scale.
Results.
Percent agreement was high for HCP vaccinated at the facility (99%) and elsewhere (95%) and was lower for HCP who declined vaccination (64%) or were medically contraindicated (64%). While agreement was high (more than 90%) for all denominator categories, many facilities' staff excluded nonemployees for whom numerator and denominator status was difficult to determine. Validity was lowest for credentialed and other nonemployees.
Conclusions.
The standardized measure of HCP influenza vaccination yields reproducible results for employees vaccinated at the facility and elsewhere. Adhering to true medical contraindications and tracking decimations should improve reliability. Difficulties in establishing denominators and determining vaccination status for credentialed and other nonemployees challenged the measure's validity and prompted revision to include a more limited group of nonemployees.
In May 2009, we investigated a hospital outbreak of pandemic H1N1 (pH1N1) infection among healthcare personnel (HCP). Thirteen (65%) of 20 HCP with pH1N1 infection had healthcare-associated cases, which were primarily attributed to transmission among HCP. Eleven (55%) of HCP with pH1N1 infection worked for 1 day or more after the onset of illness. Personnel working with mild illness may have contributed to transmission among HCP.
In this study, we synthesized ZnO nanowires using Au catalytic particles formed on a ZnO seed layer. We modulated the microstructure of the ZnO seed layer by changing the sputtering power to investigate how the underlying ZnO film microstructure affects the distribution of ZnO nanowires. Examining the samples after each of the three key steps of the growth process (ZnO seed layer deposition, Au catalytic particle formation, and nanowire growth) using various characterization methods such as scanning electron microscopy, transmission electron microscopy, and x-ray diffraction helped us illuminate the profound impacts of the grain size of the seed layer on the nanowire density.
We successfully fabricated a-IGZO TFTs employing a Ti/Cu source/drain (S/D) and SiNx passivation in order to reduce the line-resistance, as compared to most oxide TFTs that use Mo (or TCO) and SiO2 for their S/D and passivation, respectively. Although passivated with SiNx, the TFT exhibits good transfer characteristics without a negative shift. However, the TFT employing a Mo S/D exhibited conductor-like characteristics when passivated with SiNx. Our investigation suggests that the IGZO oxygen vacancies found in the Ti/Cu S/D are controlled, resulting in low concentrations, and so prevent the SiNx-passivated TFT from having a negative shift.
Despite numerous previous studies, relationships between watershed land use and adjacent streams and rivers at various scales in Korea remain unclear. This study investigated the relationships between land uses and the physical, chemical, and biological characteristics of 720 sites of streams and rivers across the country. The land uses at two spatial scales, including a 1-km buffer and the base watershed management region (BWMR), were computed in a geographical information system (GIS) with a digital land use/land cover map. Characteristics of land uses at two spatial scales were then correlated with the monitored multidimensional characteristics of the streams and rivers. The results of this study indicate that land use types have significant effects on stream and river characteristics. Specifically, most characteristics were negatively correlated with the proportions of urban, rice paddy, agricultural, and bare soil areas and positively correlated with the amount of forest. The site-scale and BWMR-scale analyses suggest that BWMR land use patterns were more strongly related to ecological integrity than they were to site land use patterns. Improving our understanding of land use effects will largely depend on relating the results of site-specific studies that use similar response techniques and measures to evaluate ecological integrity. In addition, our results clearly indicate that the characteristics of streams and rivers are closely linked and that land use types differentially affect those characteristics. Thus, effective restoration and management for ecological integrity of lotic system should consider the physical, chemical, and biological factors in combination.
Oxidation-induced stress evolutions in Ta thin films were investigated using ex situ microstructure analyses and in situ wafer curvature measurements. It was revealed that Ta thin films are oxidized to a crystalline TaO2 layer, which is subsequently oxidized to an amorphous tantalum pentoxide (a-Ta2O5) layer. Initial layered oxidation from Ta to TaO2 phases abruptly induces high compressive stress up to about 3.5 GPa with fast diffusion of oxygen through the Ta layer. Subsequently, it is followed by stress relaxation with the oxidation time, which is related to the slow oxidation from TaO2 to Ta2O5 phases. The initial compressive stress originates from the molar volume expansion during the layered formation of TaO2 from the Ta layer, while the relaxation of the compressive stresses is ascribed to the amorphous character of the a-Ta2O5 layer. According to Kissinger's analysis of the stress evolution during an isochronic heating process, the oxygen diffusion process through the a-Ta2O5 layer is the rate-controlling stage in the layered oxidation process of forming a a-Ta2O5/TaO2/Ta multilayer and has an activation energy of about 190.8 kJ/mol.