We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Based on a 4f system, a 0° reflector and a single laser diode side-pump amplifier, a new amplifier is designed to compensate the spherical aberration of the amplified laser generated by a single laser diode side-pump amplifier and enhance the power of the amplified laser. Furthermore, the role of the 4f system in the passive spherical aberration compensation and its effect on the amplified laser are discussed in detail. The results indicate that the amplification efficiency is enhanced by incorporating a 4f system in a double-pass amplifier and placing a 0° reflector only at the focal point of the single-pass amplified laser. This method also effectively uses the heat from the gain medium (neodymium-doped yttrium aluminium garnet) of the amplifier to compensate the spherical aberration of the amplified laser.
The Central Asian Orogenic Belt is the world’s largest accretionary orogenic belt, associated with the closure of the Paleo-Asian Ocean (PAO). However, the final closure timing of the eastern PAO remains contentious. The Permian-Triassic sedimentary sequences in the Wangqing area along the Changchun-Yanji suture zone offer important clues into this final closure. New data on petrology, whole-rock geochemistry, zircon U-Pb geochronology and zircon Hf isotopes of sedimentary rocks from the Miaoling Formation and Kedao Group in Wangqing area provide new insights into the final closure of the eastern end of the PAO. The maximum deposition ages of the Miaoling Formation and Kedao Group have been constrained to the Late Permian (ca. 253 Ma) and early Middle Triassic (ca. 243 Ma), respectively. These sedimentary rocks exhibit similar geochemical characteristics, showing low textural and compositional maturities, implying short sediment transport, with all detrital zircons suggesting their origins from felsic igneous rocks. The εHf(t) values of the Miaoling Formation range from −6.09 to 12.43 and from −2.20 to 7.59 for the Kedao Group, implying these rocks originated from NE China. Considering our new data along with previously published data, we propose that a reduced remnant ocean remained along the Changchun-Yanji suture zone in the early Middle Triassic (ca. 243 Ma), suggesting the final closure of the eastern PAO likely occurred between the latest Middle Triassic and early Late Triassic.
This article examines China’s outward investment in the European automotive industry since the late twentieth century. By mapping and analyzing the main investment operations, we argue that private companies played a key role in the internationalization of the Chinese automotive sector. Chinese state-owned enterprises took part, especially in the initial stages of international expansion. Our contribution also analyzes the pattern of internationalization followed by Chinese companies, arguing that it differed from the one followed by well-established automotive firms in advanced economies during previous decades. The findings reveal that achieving the most advanced technology was the key driver of outward investment decisions. However, Chinese investors’ strategy was not uniform; it was flexible and varied significantly depending on the European country and the size of the company targeted. Furthermore, Chinese government industrial policies greatly influenced the international strategies of both state-owned and private companies, particularly the “Go Out” policy.
This study examined the sour grapes/sweet lemons rationalization through 2 conditions: ‘attainable’ (sweet lemons) and ‘unattainable’ (sour grapes), reflecting China’s 2019-nCoV vaccination strategy. The aim was to find ways to change people’s beliefs and preferences regarding vaccines by easing their safety concerns and encouraging more willingness to get vaccinated. An online survey was conducted from January 22 to 27, 2021, with 3,123 residents across 30 provinces and municipalities in the Chinese mainland. The direction of belief and preference changed in line with the sour grapes/sweet lemons rationalization. Using hypothetical and real contrasts, we compared those for whom the vaccine was relatively unattainable (‘sour grapes’ condition) with those who could get the vaccine easily (‘sweet lemons’). Whether the vaccine was attainable was determined in the early stage of the vaccine roll-out by membership in a select group of workers that was supposed to be vaccinated to the greatest extent possible, or, by being in the second stage when the vaccine was available to all. The attainable conditions demonstrated higher evaluation in vaccine safety, higher willingness to be vaccinated, and lower willingness to wait and see. Hence, we propose that the manipulation of vaccine attainability, which formed the basis of the application of sour grapes/sweet lemons rationalization, can be utilized as a means to manipulate the choice architecture to nudge individuals to ease vaccine safety concerns, reducing wait-and-see tendencies, and enhancing vaccination willingness. This approach can expedite universal vaccination and its associated benefits in future scenarios resembling the 2019-nCoV vaccine rollout.
This study presents the interplay of flow and acoustics within tandem deep cavities, focusing on the resonance mechanism occurring between turbulent shear layers and acoustic eigenmodes. The arrangement inside the tandem deep cavities includes both close and remote configurations. A combined fully coupled and decoupled aeroacoustic simulation strategy was devised. Employing an advanced high-order spectral/hp element method in conjunction with implicit large eddy simulation, the nonlinear compressible Navier–Stokes equations were solved to acquire internal flow–acoustic resonant field. In parallel, the linearized Navier–Stokes equations were tackled to determine coherent shear layer perturbations with external acoustic forcing. Based on acoustic measurements, the mainstream Reynolds number approaches approximately $R{e_{in}} = {O}({10^5})$, where we identified the presence of frequency lock-in and a resonance range. Aeroacoustic noise sources were examined by implementing spectral proper orthogonal decomposition to decompose the pressure fields into hydrodynamic and acoustic components. As feedback intensified, the flow characteristics by the acoustic forcing effect and the flow-interactive effect were categorized according to the development of concurrent turbulent shear layers. Subsequently, the alternating and synchronous behaviours of concurrent shear layers resonated with the out-of-phase and in-phase acoustic eigenmodes were identified, and the corresponding large-scale counter-rotating vortex pairs and co-rotating vortex structures at the cavity entrances were extracted. The acoustic power generated by the Coriolis force was calculated using Howe's vortex-sound analogy, and the aeroacoustic energy transfer mechanism between large-scale shear layer vortices with acoustic eigenmodes was further explored. Finally, a linear response of coherent perturbations of the concurrent shear layers by external acoustic forcing was established. The amplification of flow in the streamwise direction toward the main duct led to the formation of coherent vortex structures, accompanied by separation bubbles into the main duct.
In this paper, we consider the problem of contact parameters (slippage and sinkage) estimation for multi-modal robot locomotion on granular terrains. To describe the contact events in the same framework for robots operated at different modes (e.g., wheel, leg), we propose a unified description of contact parameters for multi-modal robots. We also provide a parameter estimation method for multi-modal robots based on CNN and DWT (discrete wavelet transformation) techniques and verify its effectiveness over different types of granular terrains. Besides motion modes, this paper also considers the influence of slope angles and the robot’s handing angles over contact parameters. Through comparison and analysis of the prediction results, our method can not only effectively predict the contact parameters of multi-modal robot locomotion on a granular medium (better than $96\%$ accuracy) but also achieves the same or better performance when compared to other (direct) contact measurement methods designed for individual motion modes, that is, single-modal robots such as quadruped robots and mars rovers. Our proposed unified contact parameter estimation method can be useful for studying the interaction mechanics between multi-modal robots and granular terrains as well as terrain classification tasks due to its superior sensitivity which is analyzed in the experiments.
Two-dimensional simulations are conducted to investigate the direct initiation of cylindrical detonation in hydrogen/air mixtures with detailed chemistry. The effects of hotspot condition and mixture composition gradient on detonation initiation are studied. Different hotspot pressures and compositions are first considered in the uniform mixture. It is found that detonation initiation fails for low hotspot pressures and the critical regime dominates with high hotspot pressures. Detonation is directly initiated from the reactive hotspot, whilst it is ignited somewhere beyond the non-reactive hotspots. Two cell diverging patterns (i.e. abrupt and gradual) are identified and the detailed mechanisms are analysed. Moreover, cell coalescence occurs if many irregular cells are generated initially, which promotes the local cell growth. We also consider non-uniform detonable mixtures. The results show that the initiated detonation experiences self-sustaining propagation, highly unstable propagation and extinction in mixtures with a linearly decreasing equivalence ratio along the radial direction, i.e. 1 → 0.9, 1 → 0.5 and 1 → 0. Moreover, the hydrodynamic structure analysis shows that, for the self-sustaining detonations, the hydrodynamic thickness increases at the overdriven stage, decreases as the cells are generated and eventually becomes almost constant at the cell diverging stage, within which the sonic plane shows a ‘sawtooth’ pattern. However, in the detonation extinction cases, the hydrodynamic thickness continuously increases, and no ‘sawtooth’ sonic plane can be observed.
Pulse shaping is a powerful tool for mitigating implosion instabilities in direct-drive inertial confinement fusion (ICF). However, the high-dimensional and nonlinear nature of implosions makes the pulse optimization quite challenging. In this research, we develop a machine-learning pulse shape designer to achieve high compression density and stable implosion. The facility-specific laser imprint pattern is considered in the optimization, which makes the pulse design more relevant. The designer is applied to the novel double-cone ignition scheme, and simulation shows that the optimized pulse increases the areal density expectation by 16% in one dimension, and the clean-fuel thickness by a factor of four in two dimensions. This pulse shape designer could be a useful tool for direct-drive ICF instability control.
It has been suggested that added sugar intake is associated with non-alcoholic fatty liver disease (NAFLD). However, previous studies only focused on sugar-sweetened beverages; the evidence for associations with total added sugars and their sources is scarce. This study aimed to examine the associations of total added sugars, their physical forms (liquid v. solid) and food sources with risk of NAFLD among adults in Tianjin, China. We used data from 15 538 participants, free of NAFLD, other liver diseases, CVD, cancer or diabetes at baseline (2013–2018 years). Added sugar intake was estimated from a validated 100-item FFQ. NAFLD was diagnosed by ultrasonography after exclusion of other causes of liver diseases. Multivariable Cox proportional hazards models were fitted to calculate hazard ratios (HR) and corresponding 95 % CI for NAFLD risk with added sugar intake. During a median follow-up of 4·2 years, 3476 incident NAFLD cases were documented. After adjusting for age, sex, BMI and its change from baseline to follow-up, lifestyle factors, personal and family medical history and overall diet quality, the multivariable HR of NAFLD risk were 1·18 (95 % CI 1·06, 1·32) for total added sugars, 1·20 (95 % CI 1·08, 1·33) for liquid added sugars and 0·96 (95 % CI 0·86, 1·07) for solid added sugars when comparing the highest quartiles of intake with the lowest quartiles of intake. In this prospective cohort of Chinese adults, higher intakes of total added sugars and liquid added sugars, but not solid added sugars, were associated with a higher risk of NAFLD.
The current COVID-19 pandemic contributed by the SARS-CoV-2 has put in place an urgent need for new and promising antiviral therapeutics. The viral RNA-dependent RNA polymerase (RdRp) enzyme plays a vital role in viral replication for all RNA viruses, including SARS-CoV-2, thereby making it a prime and promising candidate for novel antiviral targeting. Interestingly, the human telomerase reverse transcriptase (hTERT), a common catalytic subunit of the telomerase enzyme in many cancers, has also been identified with structural and functional similarities to the viral RdRp. Therefore, it becomes essential to evaluate and consider anticancer drugs that target hTERT towards antiviral RdRp activity, and vice versa. For instance, Floxuridine, an hTERT inhibitor, and VX-222, a hepatitis C virus RdRp inhibitor, are now gaining recognition as a potential antiviral against SARS-CoV-2 and anti-hTERT for cancer, simultaneously. While limited studies on hTERT inhibitors for use as viral RdRp, and anti-RdRp inhibitors as hTERT inhibitors are available, in this review, we aim at bringing to light this close structural and functional relationship between both these enzymes. We punctuate this idea with specific examples on how potential anticancer inhibitors can effectively be brought to use as inhibitors against the SARS-CoV-2 virus, a relatively new pathogen, compared to the very well-studied field of cancer research.
Prospective cohort studies linking organ meat consumption and non-alcoholic fatty liver disease (NAFLD) are limited, especially in Asian populations. This study aimed to prospectively investigate the association between organ meat consumption and risk of NAFLD in a general Chinese adult population. This prospective cohort study included a total of 15 568 adults who were free of liver disease, CVD and cancer at baseline. Dietary information was collected at baseline using a validated FFQ. NAFLD was diagnosed by abdominal ultrasound after excluding other causes related to chronic liver disease. Cox proportional regression models were used to assess the association between organ meat consumption and risk of NAFLD. During a median of 4·2 years of follow-up, we identified 3604 incident NAFLD cases. After adjusting for demographic characteristics, lifestyle factors, vegetable, fruit, soft drink, seafood and red meat consumption, the multivariable hazard ratios (95 % CI) for incident NAFLD across consumption of organ meat were 1·00 (reference) for almost never, 1·04 (0·94, 1·15) for tertile 1, 1·08 (0·99, 1·19) for tertile 2 and 1·11 (1·01, 1·22) for tertile 3, respectively (Pfor trend < 0·05). Such association did not differ substantially in the sensitivity analysis. Our study indicates that organ meat consumption was related to a modestly higher risk of NAFLD among Chinese adults. Further investigations are needed to confirm this finding.
We investigated the drug resistance of Mycobacterium tuberculosis isolates from patients with tuberculosis (TB) and HIV, and those diagnosed with only TB in Sichuan, China. TB isolates were obtained from January 2018 to December 2020 and subjected to drug susceptibility testing (DST) to 11 anti-TB drugs and to GeneXpert MTB/RIF testing. The overall proportion of drug-resistant TB (DR-TB) isolates was 32.1% (n = 10 946). HIV testing was not universally available for outpatient TB cases, only 29.5% (3227/10 946) cases had HIV testing results. The observed proportion of multidrug-resistant TB (MDR-TB) isolates was almost double than that of the national level, with approximately 1.5% and 0.1% of the isolates being extensively drug resistant and universally drug resistant, respectively. The proportions of resistant isolates were generally higher in 2018 and 2019 than in 2020. Furthermore, the sensitivities of GeneXpert during 2018–2020 demonstrated a downward trend (80.9, 95% confidence intervals (CI) 76.8–85.0; 80.2, 95% CI 76.4–84.1 and 75.4, 95% CI 70.7–80.2, respectively). Approximately 69.0% (7557/10 946) of the TB cases with DST results were subjected to GeneXpert detection. Overall, the DR-TB status and the use of GeneXpert in Sichuan have improved, but DR-TB challenges remain. HIV testing for all TB cases is recommended.
We study how pension participation and expected pension benefits affect working-age adults’ consumption based on a nationally representative dataset from the China Health and Retirement Longitudinal Study (CHARLS) during the period 2011–2018. We find that the consumption of working-age adults who participate in China's Residents' Basic Pension is 15.4% higher than that of non-participants. Furthermore, we find that if working-age adults' expected pension benefits increase by RMB 1, their consumption will increase by RMB 0.34. Overall, our findings suggest that pension expectations are critical to the consumption decisions of working-age adults and can, therefore, positively affect total domestic consumption.
Late Mesozoic igneous rocks are important for deciphering the Mesozoic tectonic setting of NE China. In this paper, we present whole-rock geochemical data, zircon U–Pb ages and Lu–Hf isotope data for Early Cretaceous volcanic rocks from the Tulihe area of the northern Great Xing’an Range (GXR), with the aim of evaluating the petrogenesis and genetic relationships of these rocks, inferring crust–mantle interactions and better constraining extension-related geodynamic processes in the GXR. Zircon U–Pb ages indicate that the rhyolites and trachytic volcanic rocks formed during late Early Cretaceous time (c. 130–126 Ma). Geochemically, the highly fractionated I-type rhyolites exhibit high-K calc-alkaline, metaluminous to weakly peraluminous characteristics. They are enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs) but depleted in high-field-strength elements (HFSEs), with their magmatic zircons ϵHf(t) values ranging from +4.1 to +9.0. These features suggest that the rhyolites were derived from the partial melting of a dominantly juvenile, K-rich basaltic lower crust. The trachytic volcanic rocks are high-K calc-alkaline series and exhibit metaluminous characteristics. They have a wide range of zircon ϵHf(t) values (−17.8 to +12.9), indicating that these trachytic volcanic rocks originated from a dominantly lithospheric-mantle source with the involvement of asthenospheric mantle materials, and subsequently underwent extensive assimilation and fractional crystallization processes. Combining our results and the spatiotemporal migration of the late Early Cretaceous magmatic events, we propose that intense Early Cretaceous crust–mantle interaction took place within the northern GXR, and possibly the whole of NE China, and that it was related to the upwelling of asthenospheric mantle induced by rollback of the Palaeo-Pacific flat-subducting slab.
Limited literatures report the management of congenital left atrial appendage aneurysm (LAAA) which is extremely rare. Chest X-ray firstly showed an enlarged left cardiac silhouette for a 3-year-old patient with pneumonia. Echocardiography and magnetic resonance imaging confirmed a large cyst attached to the left atrium. Aneurysmectomy was performed through lateral thoracotomy using step-by-step method and under the guidance of transoesophageal echocardiography. We aim to show the safety and efficacy of this approach applied to children associated with congenital LAAA.
No studies have reported on how to relieve distress or relax in medical health workers while wearing medical protective equipment in coronavirus disease 2019 (COVID-19) pandemic. The study aimed to establish which relaxation technique, among six, is the most feasible in first-line medical health workers wearing medical protective equipment.
Methods
This was a two-step study collecting data with online surveys. Step 1: 15 first-line medical health workers were trained to use six different relaxation techniques and reported the two most feasible techniques while wearing medical protective equipment. Step 2: the most two feasible relaxation techniques revealed by step 1 were quantitatively tested in a sample of 65 medical health workers in terms of efficacy, no space limitation, no time limitation, no body position requirement, no environment limitation to be done, easiness to learn, simplicity, convenience, practicality, and acceptance.
Results
Kegel exercise and autogenic relaxation were the most feasible techniques according to step 1. In step 2, Kegel exercise outperformed autogenic relaxation on all the 10 dimensions among the 65 participants while wearing medical protective equipment (efficacy: 24 v. 15, no space limitation: 30 v. 4, no time limitation: 31 v. 4, no body position requirement: 26 v. 4, no environment limitation: 30 v. 11, easiness to learn: 28 v. 5, simplicity: 29 v. 7, convenience: 29 v. 4, practicality: 30 v. 14, acceptance: 32 v. 6).
Conclusion
Kegel exercise seems a promising self-relaxation technique for first-line medical health workers while wearing medical protective equipment among COVID-19 pandemic.
Many writings on the changing nature of work portray the employee–organization relationship as a casualty of the modern workplace. This chapter reviews social exchange models of the employee–organization relationship as captured in organizational support and psychological contract theories. We explore the evidence of the extent to which the employee–organization relationship has changed as a result of changes in employment practices over the past several decades. Our analysis considers both overall trends in the employee–organization relationship as well as specific issues tied to temporary and part-time work, independent contractors, tripartite employment relationships, job insecurity, job hopping, and income inequality. The evidence suggests that while certain employment practices threaten the quality of the employee–organization relationship, social exchange models provide useful and relevant frameworks through which to understand the nature of these changes and employees’ reactions to them.
The present study investigated the association between dietary patterns and hypertension applying the Chinese Dietary Balance Index-07 (DBI-07).
Design:
A cross-sectional study on adult nutrition and chronic disease in Inner Mongolia. Dietary data were collected using 24 h recall over three consecutive days and weighing method. Dietary patterns were identified using principal components analysis. Generalized linear models and multivariate logistic regression models were used to examine the associations between DBI-07 and dietary patterns, and between dietary patterns and hypertension.
Setting:
Inner Mongolia (n 1861).
Participants:
A representative sample of adults aged ≥18 years in Inner Mongolia.
Results:
Four major dietary patterns were identified: ‘high protein’, ‘traditional northern’, ‘modern’ and ‘condiments’. Generalized linear models showed higher factor scores in the ‘high protein’ pattern were associated with lower DBI-07 (βLBS = −1·993, βHBS = −0·206, βDQD = −2·199; all P < 0·001); the opposite in the ‘condiments’ pattern (βLBS = 0·967, βHBS = 0·751, βDQD = 1·718; all P < 0·001). OR for hypertension in the highest quartile of the ‘high protein’ pattern compared with the lowest was 0·374 (95 % CI 0·244, 0·573; Ptrend < 0·001) in males. OR for hypertension in the ‘condiments’ pattern was 1·663 (95 % CI 1·113, 2·483; Ptrend < 0·001) in males, 1·788 (95 % CI 1·155, 2·766; Ptrend < 0·001) in females.
Conclusions:
Our findings suggested a higher-quality dietary pattern evaluated by DBI-07 was related to decreased risk for hypertension, whereas a lower-quality dietary pattern was related to increased risk for hypertension in Inner Mongolia.