We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
This study investigates the spatial distribution of inertial particles in turbulent Taylor–Couette flow. Direct numerical simulations are performed using a one-way coupled Eulerian–Lagrangian approach, with a fixed inner-wall Reynolds number of 2500 for the carrier flow, while the particle Stokes number ($St$) varies from 0.034 to 1 for the dispersed phase. We first examine the issue of preferential concentration of particles near the outer-wall region. Employing two-dimensional Voronoï analysis, we observe a pronounced particle clustering with increasing $St$, particularly evident in regions of low fluid velocity. Additionally, we investigate the concentration balance equation, inspired by the work of Johnson et al. (J. Fluid Mech., vol. 883, 2020, A27), to examine the particle radial distribution. We discern the predominant sources of influence, namely biased sampling, turbophoresis and centrifugal effects. Across all cases, centrifugal force emerges as the primary driver, causing particle migration toward the outer wall. Biased sampling predominantly affects smaller inertial particles, driving them toward the inner wall due to sampling within Taylor rolls with inward radial velocity. Conversely, turbophoresis primarily impacts larger inertial particles, inducing migration towards both walls where turbulent intensity is weaker compared with the bulk. With the revealed physics, our work provides a basis for predicting and controlling particle movement and distribution in industrial applications.
Dietary n-3 PUFA may have potential benefits in preventing peptic ulcer disease (PUD). However, data from observational epidemiological studies are limited. Thus, we conducted a Mendelian randomisation analysis to reveal the causal impact of n-3 PUFA on PUD. Genetic variants strongly associated with plasma levels of total or individual n-3 PUFA including plant-derived α-linolenic acid and marine-derived EPA, DPA and DHA were enrolled as instrumental variables. Effect size estimates of the n-3 PUFA-associated genetic variants with PUD were evaluated using data from the UK biobank. Per one sd increase in the level of total n-3 PUFA in plasma was significantly associated with a lower risk of PUD (OR = 0·91; 95 % CI 0·85, 0·99; P = 0·020). The OR were 0·81 (95 % CI 0·67, 0·97) for EPA, 0·72 (95 % CI 0·58, 0·91) for DPA and 0·87 (95 % CI 0·80, 0·94) for DHA. Genetically predicted α-linolenic acid levels in plasma had no significant association with the risk of PUD (OR = 5·41; 95 % CI 0·70, 41·7). Genetically predicted plasma levels of n-3 PUFA were inversely associated with the risk of PUD, especially marine-based n-3 PUFA. Such findings may have offered an effective and feasible strategy for the primary prevention of PUD.
This paper retrospectively analysed the prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) in some parts of China. Between January 2013 and December 2019, we collected 4,145 respiratory samples, including pharyngeal swabs and alveolar lavage fluid. The highest PCR-positive rate of M. pneumoniae was 74.5% in Beijing, the highest resistance rate was 100% in Shanghai, and Gansu was the lowest with 20%. The highest PCR-positive rate of M. pneumoniae was 74.5% in 2013, and the highest MRMP was 97.4% in 2019; the PCR-positive rate of M. pneumoniae for adults in Beijing was 17.9% and the MRMP was 10.48%. Among the children diagnosed with community-acquired pneumonia (CAP), the PCR-positive and macrolide-resistant rates of M. pneumoniae were both higher in the severe ones. A2063G in domain V of 23S rRNA was the major macrolide-resistant mutation, accounting for more than 90%. The MIC values of all MRMP to erythromycin and azithromycin were ≥ 64 μg/ml, and the MICs of tetracycline and levofloxacin were ≤ 0.5 μg/ml and ≤ 1 μg/ml, respectively. The macrolide resistance varied in different regions and years. Among inpatients, the macrolide-resistant rate was higher in severe pneumonia. A2063G was the common mutation, and we found no resistance to tetracycline and levofloxacin.
Despite extensive research into the neural basis of autism spectrum disorder (ASD), the presence of substantial biological and clinical heterogeneity among diagnosed individuals remains a major barrier. Commonly used case‒control designs assume homogeneity among subjects, which limits their ability to identify biological heterogeneity, while normative modeling pinpoints deviations from typical functional network development at individual level.
Methods
Using a world-wide multi-site database known as Autism Brain Imaging Data Exchange, we analyzed individuals with ASD and typically developed (TD) controls (total n = 1218) aged 5–40 years, generating individualized whole-brain network functional connectivity (FC) maps of age-related atypicality in ASD. We then used local polynomial regression to estimate a networkwise normative model of development and explored correlations between ASD symptoms and brain networks.
Results
We identified a subset exhibiting highly atypical individual-level FC, exceeding 2 standard deviation from the normative value. We also identified clinically relevant networks (mainly default mode network) at cohort level, since the outlier rates decreased with age in TD participants, but increased in those with autism. Moreover, deviations were linked to severity of repetitive behaviors and social communication symptoms.
Conclusions
Individuals with ASD exhibit distinct, highly individualized trajectories of brain functional network development. In addition, distinct developmental trajectories were observed among ASD and TD individuals, suggesting that it may be challenging to identify true differences in network characteristics by comparing young children with ASD to their TD peers. This study enhances understanding of the biological heterogeneity of the disorder and can inform precision medicine.
The numerical investigation focuses on the flow patterns around a rectangular cylinder with three aspect ratios ($L/D=5$, $10$, $15$) at a Reynolds number of $1000$. The study delves into the dynamics of vortices, their associated frequencies, the evolution of the boundary layer and the decay of the wake. Kelvin–Helmholtz (KH) vortices originate from the leading edge (LE) shear layer and transform into hairpin vortices. Specifically, at $L/D=5$, three KH vortices merge into a single LE vortex. However, at $L/D=10$ and $15$, two KH vortices combine to form a LE vortex, with the rapid formation of hairpin vortex packets. A fractional harmonic arises due to feedback from the split LE shear layer moving upstream, triggering interaction with the reverse flow. Trailing edge (TE) vortices shed, creating a Kármán-like street in the wake. The intensity of wake oscillation at $L/D=5$ surpasses that in the other two cases. Boundary layer transition occurs after the saturation of disturbance energy for $L/D=10$ and $15$, but not for $L/D=5$. The low-frequency disturbances are selected to generate streaks inside the boundary layer. The TE vortex shedding induces the formation of a favourable pressure gradient, accelerating the flow and fostering boundary layer relaminarization. The self-similarity of the velocity defect is observed in all three wakes, accompanied by the decay of disturbance energy. Importantly, the decrease in the shedding frequency of LE (TE) vortices significantly contributes to the overall decay of disturbance energy. This comprehensive exploration provides insights into complex flow phenomena and their underlying dynamics.
To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.
An intra-band pattern-corrected decoupling vertical conducting wall is realized by dielectric substrate with conductor cladding on both side wall between two tightly spaced H-plane microstrip patches with λ0/20 edge-to-edge spacing. The wall is grounded and two symmetrical slots are etched on the vertical substrate. The measured results agree with the simulations, showing that the slotted vertical wall reduces the mutual coupling within the bandwidth to −30 dB and corrects the radiation beam tilt to be within −4.5° to 3° from the broadside direction. A gain reduction of 0.6 dB is observed compared to the gain without the slotted decoupling wall.
Listeriosis is a rare but serious foodborne disease caused by Listeria monocytogenes. This matched case–control study (1:1 ratio) aimed to identify the risk factors associated with food consumption and food-handling habits for the occurrence of sporadic listeriosis in Beijing, China. Cases were defined as patients from whom Listeria was isolated, in addition to the presence of symptoms, including fever, bacteraemia, sepsis and other clinical manifestations corresponding to listeriosis, which were reported via the Beijing Foodborne Disease Surveillance System. Basic patient information and possible risk factors associated with food consumption and food-handling habits were collected through face-to-face interviews. One hundred and six cases were enrolled from 1 January 2018 to 31 December 2020, including 52 perinatal cases and 54 non-perinatal cases. In the non-perinatal group, the consumption of Chinese cold dishes increased the risk of infection by 3.43-fold (95% confidence interval 1.27–9.25, χ2 = 5.92, P = 0.02). In the perinatal group, the risk of infection reduced by 95.2% when raw and cooked foods were well-separated (χ2 = 5.11, P = 0.02). These findings provide important scientific evidence for preventing infection by L. monocytogenes and improving the dissemination of advice regarding food safety for vulnerable populations.
This study examined the effect of a cryoprotectant with and without pentoxifylline supplementation on the motility and viability of human testicular sperm, both before and after freezing. Testicular samples were obtained from 68 patients with azoospermia who came to the Andrology Service of West China Second University Hospital, Sichuan University, for testicular biopsies from December 2019 to April 2020. All patients were assigned randomly to two groups: experimental, whose testicular sperm were added to the cryoprotectant with pentoxifylline, and the control, whose testicular sperm were added to the cryoprotectant without pentoxifylline. Both groups used the same freezing and thawing methods. Testicular sperm motility in the experimental group was significantly higher than that of the control group, both before and after cryopreservation. The recovery rate of sperm motility in the experimental group was significantly higher than that of the control group. The percentage of samples with motile testicular sperm in the experimental group was significantly higher than that of the control group after thawing. Sperm viability was unchanged between the experimental and control groups, both before and after freezing. Overall, a pentoxifylline-supplemented cryoprotectant can significantly improve the motility of testicular sperm before and after cryopreservation.
In this study, the response of a supercritical round jet to various excitation modes including varicose, helical, flapping, dual varicose/helical and dual varicose/flapping is studied using large eddy simulations. A translation method is proposed to enhance the accuracy of the equation-of-state and transport correlations. Results show that the excitations, especially the dual modes and the varicose mode (when the forcing frequency matches the preferred mode in the potential core), considerably increase the turbulent mixing, the pitch distance and the penetration depth of the coherent structures as compared with the unexcited case. However, the excitations, especially the dual modes, de-energize the coherent structures and reduce the degree of three-dimensionality of the coherent structures. The excitations reduce the potential core length drastically, especially under the flapping and the dual mode excitations. Analyses show that the dual varicose/flapping mode excitations have the highest impacts on the jet development and the cross-section shape as compared with the other modes. Moreover, the dual varicose/flapping excitations have the highest impact on the large-scale turbulent mixing. However, the small-scale turbulent mixing is at the maximum value, when the supercritical jet is stimulated by the dual varicose/flapping mode excitations with the varicose-to-flapping frequency ratio of 2. The cross-correlations between the density fluctuations and the imposed perturbations indicate that the impact of the excitations on the turbulent diffusion is at the maximum value at the potential core breakdown location, while the correlation diminishes at the other locations.
The objective of this study was to delineate the characteristics and incidence of congenital heart disease (CHD) in patients with isolated microtia and to determine whether the prevalence of CHD among patients with isolated microtia increases with the severity of microtia.
Methods:
A total of 804 consecutive patients had a pre-operative colour Doppler echocardiographic examination. A retrospective study was performed with the clinical and imaging data from November, 2017 to January, 2019. The χ2 test was performed to analyse the interaction between isolated microtia and CHD.
Results:
With the colour Doppler echocardiographic examination’s data from 804 consecutive isolated microtia patients, we found CHD, including atrial septal defect, ventricular septal defect, tetralogy of Fallot, patent ductus arteriosus, and others, occurred in 52 of 804 patients (6.5%). Atrial septal defect prevalence in patients with isolated microtia was significantly higher than ventricular septal defect (24/804 versus 11/804, p < 0.05) and patent ductus arteriosus (24/804 versus 2/804, p < 0.001). Ventricular septal defect prevalence in patients with isolated microtia was significantly higher than patent ductus arteriosus (11/804 versus 2/804, p < 0.05). All four types of microtia (concha-type microtia, small concha-type microtia, lobule-type microtia, and anotia) had similar incidences of CHD with no difference in the incidences among these types (p > 0.05 respectively). Furthermore, there was no significant difference in the incidence of the atrial septal defect among the four subtypes (p > 0.05 respectively). Similarly, ventricular septal defect and patent ductus arteriosus also showed no differences (p > 0.05 respectively).
Conclusions:
The overall incidences of CHD and three most common CHD subtypes (atrial septal defect, ventricular septal defect, and patent ductus arteriosus) in patients with isolated microtia are higher than general population. The prevalence of CHD among patients with isolated microtia does not increase with the severity of microtia. According to our experience in this study, we suggest colour Doppler echocardiographic imaging should be performed for isolated microtia patients soon after birth if possible. Furthermore, for the plastic surgeon and anaesthesiologist, it is important to take pre-operative colour Doppler echocardiographic images which can help evaluate heart function to ensure the safety of the peri-operative period. Future studies when investigating CHDs associated with isolated microtia could focus on genetic and molecular mechanisms.
Using frequency-modulated continuous wave radar data from the 32nd Chinese Antarctic Research Expedition in 2015/16, subsurface profiles were obtained along an East Antarctic inland traverse from Zhongshan station to Dome A, and four distinct regions were selected to analyze the spatiotemporal variability in historical surface mass balance (SMB). Based on depth, density, and age data from ice cores along the traverse, the radar data were calibrated to yield average SMB data. The zone 49–195 km from the coast has the highest SMB (235 kg m−2 a−1). The 780–892 km zone was most affected by the Medieval Warm Period and the Little Ice Age, and the SMB during ad 1454–1836 (71 kg m−2 a−1) was only one-quarter of that in the 20th century. The SMB in the 1080–1157 km zone fluctuates the most, possibly due to erosion or irregular deposition of snow by katabatic winds in low SMB areas with surface elevation fluctuations. Dome A (1157–1236 km) has the lowest SMB (29 kg m−2 a−1) and did not decrease during Little Ice Age. Understanding the spatiotemporal variability of SMB in a larger space can help us understand the complex climate history of Antarctica.
The present study investigated the association between fibre degradation and the concentration of dissolved molecular hydrogen (H2) in the rumen. Napier grass (NG) silage and corn stover (CS) silage were compared as forages with contrasting structures and degradation patterns. In the first experiment, CS silage had greater 48-h DM, neutral-detergent fibre (NDF) and acid-detergent fibre degradation, and total gas and methane (CH4) volumes, and lower 48-h H2 volume than NG silage in 48-h in vitro incubations. In the second experiment, twenty-four growing beef bulls were fed diets including 55 % (DM basis) NG or CS silages. Bulls fed the CS diet had greater DM intake (DMI), average daily gain, total-tract digestibility of OM and NDF, ruminal dissolved methane (dCH4) concentration and gene copies of protozoa, methanogens, Ruminococcus albus and R. flavefaciens, and had lower ruminal dH2 concentration, and molar proportions of valerate and isovalerate, in comparison with those fed the NG diet. There was a negative correlation between dH2 concentration and NDF digestibility in bulls fed the CS diet, and a lack of relationship between dH2 concentration and NDF digestibility with the NG diet. In summary, the fibre of CS silage was more easily degraded by rumen microorganisms than that of NG silage. Increased dCH4 concentration with the CS diet presumably led to the decreased ruminal dH2 concentration, which may be helpful for fibre degradation and growth of fibrolytic micro-organisms in the rumen.
The nitrogen-decorated CeO2/reduced graphene oxide nanocomposite (CeO2/N-rGO) was one-step synthesized by a facile hydrothermal technique and applied as counter electrode materials for dye-sensitized solar cells (DSSCs). For comparison, CeO2/rGO and rGO were also synthesized by adjusting corresponding reactants. It was found that the as-synthesized CeO2/N-rGO shows better electrocatalytic activity for triiodide/iodide reduction than that of pure rGO and CeO2/rGO, and a synergistic effect of nitrogen and CeO2 on the rGO sheets was observed. The photoelectric conversion efficiency of DSSCs based on CeO2/N-rGO counter electrode was 3.20%, which is higher than that of CeO2/rGO (2.45%) and rGO counter electrode (1.37%). Furthermore, the synergistic effect of nitrogen and CeO2 on the rGO sheets was also discussed in detail with different CeO2 amount levels. It is believed that this one-step synthetic method is a potential way to synthesize low-cost and efficient rGO-based multiple composited counter electrode materials to replace more expensive Pt.
The effects of stress-free and stress-assisted pretreatments at a relatively high temperature on the creep properties of [001] and [011] oriented Ni-based single-crystal superalloys are investigated in this article. The results show that the creep life of the pretreated samples is shorter than that of the original samples. The variation of the γ/γ′ morphology during the creep process is characterized by the microstructure period. Based on the interaction between the dislocations in the γ matrix channel and the γ′ phase, the difference in creep properties of the two oriented alloys after pretreatment is analyzed. Combined with the crystal plasticity theory and the number of activated slip systems observed in the experiments, it can be concluded that the two oriented alloys after pretreatment show obvious creep anisotropy and that the creep life increases with the number of activated slip system.
Radiocarbon (14C) has become a unique and powerful tracer in source apportionment of atmospheric carbonaceous particles. In this study, the Asia Pacific Economic Cooperation summit (APEC) held in Beijing in 2014 was used as a demonstration to research the source apportionment of atmosphere PM2.5. We used a 200 kV single stage accelerator mass spectrometer recently completed at China Institute of Atomic Energy (CIAE). The PM2.5 samples related to above case were collected, and the characteristics of radiocarbon in organic carbon (OC) and elemental carbon (EC) in samples were analyzed using the AMS. The results show that the Before-APEC pollution emission mode is different from the During-APEC and After-APEC pollution emission modes. For Before-APEC, During-APEC and After-APEC, the average values of fossil carbon fraction of OC are 0.463, 0.431 and 0.615, respectively, and those of EC are 0.644, 0.561 and 0.687. The fossil source contributions of traffic activities using fossil fuels to OC and EC are 15.8 % and 21.9 %, respectively. The fossil source contributions of industrial activities to OC and EC are 38.0 % and 8.2 %, respectively. It is about 7–10 days that is needed to take to regenerate the PM2.5 pollution caused by human activities.
In this work, hierarchical mesoporous Zn–Ni–Co–S–rGO/NF microspheres have been prepared by hydrothermal, sulfurization, and subsequent calcination process. The effect of different sulfurization time on the morphology and capacitance of composites was tested. The high electrochemical performance of (Zn–Ni–Co–S–rGO/NF) composite was obtained when the sulfurization time was 3 h (Zn–Ni–Co–S–rGO/NF-3h), where a specific capacitance of 627.7 F/g at 0.25 A/g and excellent rate capability of about 97.8% capacitance retention at 2 A/g after 4000 cycles were achieved. Moreover, an asymmetric supercapacitor fabricated by (Zn–Ni–Co–S–rGO/NF-3h) composite and activated carbon (AC) as the positive and the negative electrodes, respectively, showed a high energy density of 75.96 W h/kg at a power density of 362.49 W/kg with a remarkable cycle stability performance of 91.2% capacitance retention over 5000 cycles. This incredible electrochemical behavior illustrates that the hierarchical mesoporous Zn–Ni–Co–S–rGO/N-3h microsphere electrodes are promising electrode materials for application in high-performance supercapacitors.
A varactor-based fully reconfigurable microstrip bandpass-to-bandpass-with-embedded-stopband filter is presented in this paper. This filter offers wide center frequency and bandwidth tuning flexibility under both bandpass mode and bandpass-with-embedded-stopband mode. The entire tuning ability is based on multiple mode resonator theory and external quality factor tuning structure for bandpass mode and the introduction of transmission zeros (TZs) for bandpass-with-embedded-stopband mode. Under the bandpass mode, the center frequency tuning range is 0.96–1.45 GHz and the bandwidth can be tuned from 0.09 to 1.41 GHz with a fixed center frequency at 1.22 GHz. Under bandpass-with-embedded-stopband mode, the center frequency and bandwidth can be tuned from 0.94 to 1.61 GHz and 0.2–0.33 GHz, respectively. Good agreements are shown between simulated and measured results.
In this paper, the characteristics of microwave propagation channels in drill pipe bore are analyzed by regarding the drill pipe as an irregular lossy cylindrical waveguide. An attenuation law is modeled using multipath propagation theory and an experimental statistical method. It is shown from physical measurement results that 5″ and $5^{1/2 \prime \prime} $ drill pipe bores, widely applied in the field of air drilling, can be used as 2.4 GHz band microwave channels with the caveat that the numerous reflective surfaces in the joint section of the drill pipe produce a great deal of reflected waves. Hence, the drill pipe bore has the characteristics of a dual cluster multipath channel, and multipath fading and delay are the primary factors affecting propagation quality. The study's constructed microwave attenuation model, based on multipath channels, can be regarded as the average attenuation of the unit length in the drill pipe bore, and can be used as the basis for simulation and analysis of the longer drill pipe string. In addition, a large delay between the two clusters leads to a significant increase of the root mean square delay spread. Consequently, multipath fading and delay are the main factors affecting the channel transmission rate.