We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The selection of random sampling points is crucial for the path quality generated by probabilistic roadmap (PRM) algorithm. Increasing the number of sampling points can enhance path quality. However, it may also lead to extended convergence time and reduced computational efficiency. Therefore, an improved probabilistic roadmap algorithm (TL-PRM) is proposed based on topological discrimination and lazy collision. TL-PRM algorithm first generates a circular grid area among start and goal points. Then, it constructs topological nodes. Subsequently, elliptical sampling areas are created between each pair of adjacent topological nodes. Random sampling points are generated within these areas. These sampling points are interconnected using a layer connection strategy. An initial path is generated using a delayed collision strategy. The path is then adjusted by modifying the nodes on the convex outer edges to avoid obstacles. Finally, a reconnection strategy is employed to optimize the path. This reduces the number of path waypoints. In dynamic environments, TL-PRM algorithm employs pose adjustment strategies for semi-static and dynamic obstacles. It can use either the same or opposite pose adjustments to avoid dynamic obstacles. Experimental results indicate that TL-PRM algorithm reduces the average number of generated sampling points by 70.9% and average computation time by 62.1% compared with PRM* and PRM-Astar algorithms. In winding and narrow passage maps, TL-PRM algorithm significantly decreases the number of sampling points and shortens convergence time. In dynamic environments, the algorithm can adjust its pose orientation in real time. This allows it to safely reach the goal point. TL-PRM algorithm provides an effective solution for reducing the generation of sampling points in PRM algorithm.
This study presents a novel investigation into the vortex dynamics of flow around a near-wall rectangular cylinder based on direct numerical simulation at $Re=1000$, marking the first in-depth exploration of these phenomena. By varying aspect ratios ($L/D = 5$, $10$, $15$) and gap ratios ($G/D = 0.1$, $0.3$, $0.9$), the study reveals the vortex dynamics influenced by the near-wall effect, considering the incoming laminar boundary layer flow. Both $L/D$ and $G/D$ significantly influence vortex dynamics, leading to behaviours not observed in previous bluff body flows. As $G/D$ increases, the streamwise scale of the upper leading edge (ULE) recirculation grows, delaying flow reattachment. At smaller $G/D$, lower leading edge (LLE) recirculation is suppressed, with upper Kelvin–Helmholtz vortices merging to form the ULE vortex, followed by instability, differing from conventional flow dynamics. Larger $G/D$ promotes the formation of an LLE shear layer. An intriguing finding at $L/D = 5$ and $G/D = 0.1$ is the backward flow of fluid from the downstream region to the upper side of the cylinder. At $G/D = 0.3$, double-trailing-edge vortices emerge for larger $L/D$, with two distinct flow behaviours associated with two interactions between gap flow and wall recirculation. These interactions lead to different multiple flow separations. For $G/D = 0.9$, the secondary vortex (SV) from the plate wall induces the formation of a tertiary vortex from the lower side of the cylinder. Double-SVs are observed at $L/D = 5$. Frequency locking is observed in most cases, but is suppressed at $L/D = 10$ and $G/D = 0.9$, where competing shedding modes lead to two distinct evolutions of the SV.
The propagation of multiple ultraintense femtosecond lasers in underdense plasmas is investigated theoretically and numerically. We find that the energy merging effect between two in-phase seed lasers can be improved by using two obliquely incident guiding lasers whose initial phase is $\pi$ and $\pi /2$ ahead of the seed laser. Particle-in-cell simulations show that due to the repulsion and energy transfer of the guiding laser, the peak intensity of the merged light is amplified by more than five times compared to the seed laser. The energy conversion efficiency from all incident lasers to the merged light is up to approximately 60$\%$. The results are useful for many applications, including plasma-based optical amplification, charged particle acceleration and extremely intense magnetic field generation.
This study aimed to investigate the intake of dairy products during pregnancy in women with gestational diabetes mellitus (GDM) and its impacts on neonatal birth weight and pregnancy outcomes. A total of 386 women with GDM during the second trimester pregnancy participated in this prospective cohort study. We evaluated dairy products intake through the FFQ. Pregnancy outcomes were obtained from the delivery data. Participants were divided into insufficient and sufficient intake of milk and dairy products groups (< 300 g/d and ≥ 300 g/d, respectively). The average intake of dairy products during the second trimester pregnancy in women with GDM was 317·8 ± 179·5 g/d, and the total energy intake was 1635·4 ± 708·7 kcal/d. However, 76·68 % of them did not meet the recommended total energy intake of women with GDM. After adjusting for confounding factors, women with GDM who consumed ≥ 300 g/d of dairy products had an average reduction in birth weight of 93·1 g compared with women who consumed < 300 g/d of dairy products (95 % CI −171·343, −14·927). Women with GDM in sufficient intake group was also associated with lower risk of macrosomia (95 % CI 0·043, 0·695) and caesarean section (95 % CI 0·387, 0·933) and not related to low birth weight infant (95 % CI 0·617, 14·502) and preterm birth (95 % CI 0·186, 1·510) when compared with participants in insufficient intake group. Under the premise of insufficient total energy intake, the intake of dairy products during the second trimester pregnancy in women with GDM might be related to the decrease of neonatal birth weight.
The effect of the polarizations of two counter-propagating relativistic laser pulses interacting with subwavelength thin solid-density foil is investigated. Three-dimensional particle-in-cell simulations and analytical modelling show that the interaction and resulting transverse instability depend strongly on the polarization directions as well as the intensity distribution of the resultant light field in the foil. The left- and right-handed circularly polarized laser pair with the same phase at the common focal spot in the ultrathin foil leads to the strongest distortion of the foil. The fastest growing mode and maximum growth rate depend mainly on the laser intensity. For all polarization and phase-difference combinations, the instability is weakest when the two laser pulses are exactly out of phase at the common focusing point in the foil.
Rhopalosiphum padi is an important grain pest, causing severe losses during crop production. As a systemic insecticide, flonicamid can control piercing-sucking pests efficiently. In our study, the lethal effects of flonicamid on the biological traits of R. padi were investigated via a life table approach. Flonicamid is highly efficiently toxic to R. padi, with an LC50 of 9.068 mg L−1. The adult longevity and fecundity of the R. padi F0 generation were markedly reduced under the LC25 and LC50 concentrations of flonicamid exposure. In addition, negative transgenerational effects on R. padi were observed under exposure to lethal concentrations of flonicamid, with noticeable decreases in the reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation under the LC25 concentration of flonicamid. Furthermore, the third nymph stage (N3), preadult stage, duration of the adult pre-reproductive period, duration of the total pre-reproductive period, reproductive period, adult longevity, total longevity, and total fecundity of the F1 generation were significantly lower under treatment with the LC50 concentration of flonicamid. The life table parameters were subsequently analysed, revealing that the intrinsic rate of increase (rm) and the net reproductive rate (R0) were significantly lower but that the finite rate of increase (λ) and the mean generation time (T) were not significantly different under the LC25 and LC50 concentrations of flonicamid. These data are beneficial for grain aphid control and are critical for exploring the role of flonicamid in the integrated management of this key pest.
A scheme for generating high-flux angularly uniform proton beams with high laser-to-proton energy conversion efficiency is proposed. Three laser beams are focused on a microwire array attached to a solid-density hemispheric target. The laser-driven hot electrons from the front of the microwire hemisphere generate a hot-electron sheath in the hollow behind it, so that the protons on its back are accelerated by target normal sheath acceleration. The accelerated protons are of high flux, as well as angularly and energetically uniform. The scheme should be useful for applications involving warm dense matter, such as isochoric heating and modification of materials, as well as for proton therapy and inertial confinement fusion.
The liver has multiple functions such as detoxification, metabolism, synthesis and storage. Folate is a water-soluble vitamin B9, which participates in one-carbon transfer reactions, maintains methylation capacity and improves oxidative stress. Folic acid is a synthetic form commonly used as a dietary supplement. The liver is the main organ for storing and metabolising folate/folic acid, and the role of folate/folic acid in liver diseases has been widely studied. Deficiency of folate results in methylation capacity dysfunction and can induce liver disorders. However, adverse effects of excessive use of folic acid on the liver have also been reported. This review aims to explore the mechanism of folate/folic acid in different liver diseases, promote further research on folate/folic acid and contribute to its rational clinical application.
Oncomelania hupensis (O. hupensis), the sole intermediate host of Schistosoma japonicum, greatly influence the prevalence and distribution of schistosomiasis japonica. The distribution area of O. hupensis has remained extensive for numerous years. This study aimed to establish a valid agent-based model of snail density and further explore the environmental conditions suitable for snail breeding. A marshland with O. hupensis was selected as a study site in Dongting Lake Region, and snail surveys were monthly conducted from 2007 to 2016. Combined with the data from historical literature, an agent-based model of snail density was constructed in NetLogo 6.2.0 and validated with the collected survey data. BehaviorSpace was used to identify the optimal ranges of soil temperature, pH, soil water content, and vegetation coverage for snail growth, development and reproduction. An agent-based model of snail density was constructed and showed a strong agreement with the monthly average snail density from the field surveys. As soil temperature increased, the snail density initially rose before declining, reaching its peak at around 21°C. There were similar variation patterns for other environmental factors. The findings from the model suggested that the optimum ranges of soil temperature, pH, soil water content and vegetation coverage were 19°C to 23 °C, 6.4 to 7.6, 42% to 75%, and 70% to 93%, respectively. A valid agent-based model of snail density was constructed, providing more objective information about the optimum ranges of environmental factors for snail growth, development and reproduction.
Artificial sweeteners are generally used and recommended to alternate added sugar for health promotion. However, the health effects of artificial sweeteners remain unclear. In this study, we included 6371 participants from the National Health and Nutrition Examination Survey with artificial sweetener intake records. Logistic regression and Cox regression were applied to explore the associations between artificial sweeteners and risks of cardiometabolic disorders and mortality. Mendelian randomisation was performed to verify the causal associations. We observed that participants with higher consumption of artificial sweeteners were more likely to be female and older and have above medium socio-economic status. After multivariable adjustment, frequent consumers presented the OR (95 % CI) for hypertension (1·52 (1·29, 1·80)), hypercholesterolaemia (1·28 (1·10, 1·50)), diabetes (3·74 (3·06, 4·57)), obesity (1·52 (1·29, 1·80)), congestive heart failure (1·89 (1·35, 2·62)) and heart attack (1·51 (1·10, 2·04)). Mendelian randomisation confirmed the increased risks of hypertension and type 2 diabetes. Moreover, an increased risk of diabetic mortality was identified in participants who had artificial sweeteners ≥ 1 daily (HR = 2·62 (1·46, 4·69), P = 0·001). Higher consumption of artificial sweeteners is associated with increased risks of cardiometabolic disorders and diabetic mortality. These results suggest that using artificial sweeteners as sugar substitutes may not be beneficial.
This study aimed to analyse the spatial and temporal patterns of disease burden attributed to high BMI (DB-hBMI) from 1990 to 2019 in Belt and Road Initiative (BRI) countries, in light of increasing hBMI prevalence worldwide.
Design:
The study was a secondary analysis of Global Burden of Disease 2019 (GBD 2019) that analysed (using Joinpoint regression analysis) numbers and the age-standardised rate of mortality and disability-adjusted life years (DALY) of hBMI-induced diseases and their trends from 1990 to 2019 and in the final decade.
Setting:
GBD 2019 study data for BRI countries were categorised by country, age, gender and disease.
Participants:
GBD 2019 data were used to analyse DB-hBMI in BRI countries.
Results:
In 2019, China, India and Russia reported the highest mortality and DALY among BRI countries. From 1990 to 2019, the age-standardised DALY increased in Southeast Asia and South Asia, whereas many European countries saw declines. Notably, Bangladesh, Nepal and Vietnam showed the steepest increases, with average annual percentage change (AAPC) values of 4·42 %, 4·19 % and 4·28 %, respectively (all P < 0·05). In contrast, Israel, Slovenia and Poland experienced significant reductions, with AAPC values of –1·70 %, –1·63 % and –1·58 %, respectively (all P < 0·05). The most rapid increases among males were seen in Vietnam, Nepal and Bangladesh, while Jordan, Poland and Slovenia recorded the fastest declines among females. Across most BRI countries, the burden of diabetes and kidney diseases related to hBMI showed a significant uptrend.
Conclusion:
DB-hBMI varies significantly by region, age, gender and disease type across BRI countries. It can pose a substantial threat to public health.
Immigrant caregivers support the aging population, yet their own needs are often neglected. Mobile technology-facilitated interventions can promote caregiver health by providing easy access to self-care materials.
Objective
This study employed a design thinking framework to examine Chinese immigrant caregivers’ (CICs) unmet self-care needs and co-design an app for promoting self-care with CICs.
Methods
Nineteen semi-structured interviews were conducted in conceptual design and prototype co-design phases.
Findings
Participants reported unmet self-care needs influenced by psychological and social barriers, immigrant status, and caregiving tasks. They expressed the need to learn to keep healthy boundaries with the care recipient and respond to emergencies. Gaining knowledge was the main benefit that drew CICs’ interest in using the self-care app. However, potential barriers to use included issues of curriculum design, technology anxiety, limited free time, and caregiving burdens.
Discussion
The co-design process appears to be beneficial in having participants voice both barriers and preferences.
Power scaling in conventional broad-area (BA) lasers often leads to the operation of higher-order lateral modes, resulting in a multiple-lobe far-field profile with large divergence. Here, we report an advanced sawtooth waveguide (ASW) structure integrated onto a wide ridge waveguide. It strategically enhances the loss difference between higher-order modes and the fundamental mode, thereby facilitating high-power narrow-beam emission. Both optical simulations and experimental results illustrate the significant increase in additional scattering loss of the higher-order modes. The optimized ASW lasers achieve an impressive output power of 1.1 W at 4.6 A at room temperature, accompanied by a minimal full width at half maximum lateral divergence angle of 4.91°. Notably, the far-field divergence is reduced from 19.61° to 11.39° at the saturation current, showcasing a remarkable 42% improvement compared to conventional BA lasers. Moreover, the current dependence of divergence has been effectively improved by 38%, further confirming the consistent and effective lateral mode control capability offered by our design.
We report an experimental study of the formation and evolution of laminar thermal structures generated by a small heat source, with a focus on their correlation to the thermal boundary layer and effects of heating time $t_{heat}$. The experiments are performed over the flux Rayleigh number ($Ra_f$) range $2.1\times 10^6 \leq Ra_f \leq 3.6\times 10^{7}$ and the Prandtl number ($Pr$) range $28.6 \leq Pr \leq 904.7$. The corresponding Rayleigh number ($Ra= t_{heat}\,Ra_{f}/\tau _0\,Pr$) range is $900 \leq Ra \leq 4\times 10^{4}$, where $\tau _0$ is a diffusion time scale. For thermal structures generated by continuous heating (i.e. starting plumes), their formation process exists three characteristic times that are well reflected by changes in the thermal boundary layer thickness. These characteristic times, denoted as $t_{emit}$, $t_{recover}$ and $t_{static}$, correspond to the moments when the plume emission begins and completes, and when the thermal boundary layer becomes quasi-static, respectively. Their $Ra_f$–$Pr$ dependencies are found to be $t_{emit}/\tau _0\sim Ra_f^{-0.41}\,Pr^{0.41}$, $t_{recover}/\tau _0\sim Ra_f^{-0.48}\,Pr^{0.48}$ and $t_{static}/\tau _0\sim Ra_f^{-0.49}\,Pr^{0.33}$, respectively. Thermal structures generated by finite $t_{heat}$ exhibit similar evolution dynamics once $t_{heat} \ge t_{emit}$, with the accelerating stage behaving like starting plumes and the decay stage like thermals (i.e. a finite amount of buoyant fluids). It is further found that their maximum rising velocity experiences a transition in the $Ra$-dependence from $Ra$ to $(Ra\ln Ra)^{0.5}$ at $Ra \simeq 6000$; and their maximum acceleration reaches the value of starting plumes at $t_{heat}\simeq t_{recover}$, and remains unchanged for larger $t_{heat}$. In particular, the maximum rising velocity for the cases with $t_{heat} = t_{recover}$ follows a scaling relation $Ra_f^{0.37}\,Pr^{-0.37}$, in contrast to the relation $Ra_f^{0.48}\,Pr^{-0.48}$ for starting plumes. This study provides a more comprehensive understanding of laminar thermal structures, which are relevant to a range of processes in nature and laboratory systems such as Rayleigh–Bénard convection.
The innovation value of open government data (OGD) drives firms to the participation in OGD-driven innovation. However, to fully excavate the innovation value of OGD for firms, it is essential to explore the factors and mechanisms that affect OGD-driven innovation capacity. On the basis of the technology–organization–environment (TOE) framework, a theoretical model affecting OGD-driven innovation capacity is proposed for analysis by partial least squares structural equation modeling with 236 sample data from China. The results indicate that top leaders’ support positively impacts on OGD-driven innovation capacity in firms. And we also prove that technical competence, organizational arrangement, and innovation support partially mediate the relationship between top leaders’ support and OGD-driven innovation capacity on the basis of the TOE framework. Consequently, the findings provide new research perspectives and practical guidance for promoting OGD-driven innovation capacity in firms.
For a real number $0<\epsilon <1/3$, we show that the anti-canonical volume of an $\epsilon $-klt Fano $3$-fold is at most $3,200/\epsilon ^4$, and the order $O(1/\epsilon ^4)$ is sharp.
The numerical investigation focuses on the flow patterns around a rectangular cylinder with three aspect ratios ($L/D=5$, $10$, $15$) at a Reynolds number of $1000$. The study delves into the dynamics of vortices, their associated frequencies, the evolution of the boundary layer and the decay of the wake. Kelvin–Helmholtz (KH) vortices originate from the leading edge (LE) shear layer and transform into hairpin vortices. Specifically, at $L/D=5$, three KH vortices merge into a single LE vortex. However, at $L/D=10$ and $15$, two KH vortices combine to form a LE vortex, with the rapid formation of hairpin vortex packets. A fractional harmonic arises due to feedback from the split LE shear layer moving upstream, triggering interaction with the reverse flow. Trailing edge (TE) vortices shed, creating a Kármán-like street in the wake. The intensity of wake oscillation at $L/D=5$ surpasses that in the other two cases. Boundary layer transition occurs after the saturation of disturbance energy for $L/D=10$ and $15$, but not for $L/D=5$. The low-frequency disturbances are selected to generate streaks inside the boundary layer. The TE vortex shedding induces the formation of a favourable pressure gradient, accelerating the flow and fostering boundary layer relaminarization. The self-similarity of the velocity defect is observed in all three wakes, accompanied by the decay of disturbance energy. Importantly, the decrease in the shedding frequency of LE (TE) vortices significantly contributes to the overall decay of disturbance energy. This comprehensive exploration provides insights into complex flow phenomena and their underlying dynamics.
Based on 30 high-resolution U-Th dating controls, we reconstruct stalagmite δ18O records from 45 to 15 thousand years ago (ka B.P., before AD 1950) from the Shizhu Cave, which is located in southwestern China under the influence of both the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM). By integrating with the other stalagmite δ18O records in Asia during the middle to late last glacial, our results reveal two main moisture trajectories: one from the Indian Ocean, through the Shizhu Cave towards central China, and the other from the Pacific Ocean to central and northern China. The systematic decrease of the average values of stalagmite δ18O records from oceans to inland China reveals a spatial pattern of water vapour fractionation and moisture trajectory during the middle to late last glacial. In contrast, the variation amplitude, which is defined as the departures apart from the background δ18O records during Heinrich stadials 1 to 4 (HS1–HS4), show an increasing trend from the coastal oceans to mid-latitude inland China, presenting a ‘coastal-inland’ pattern, which can be interpreted by the enhanced East Asian Winter Monsoon (EAWM) and the weakened EASM. More specifically, the enriched stalagmite δ18O records in the EASM region during HS1 to HS4 are caused by the decreased summer rainfall amount or/and the increased proportion of summer moisture resources from the Pacific Ocean. These new observations deepen our understanding of the complicated stalagmite δ18O records in the EASM region.