We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Most existing literature treats family culture as a static and deterministic factor with a double-edged effect on the competitive advantage (CA) of family firms while overlooking its dynamic nature. Moreover, limited literature addresses how to solve this double-edged problem. This study fills these gaps by examining how family culture can generate sustainable CA from the lens of the affordance perspective. A three-stage process model is developed based on a longitudinal case study of Baiyun, a Chinese family firm with over a 100-year family history. This model suggests that family firms should intentionally adopt appropriate sensemaking and sensegiving strategies tailored to different stakeholders and dynamic entrepreneurship situations to effectively leverage the natural and designed affordances of family culture. By cultivating efficiency, emotional, and value identifications among internal and external stakeholders, these sensegiving strategies facilitate family collaboration, continuous trust, strategic focus, and extensive ecological synergy, which serve as the key sources of CA. Ultimately, the model emphasizes that the key to managing the double-edged effect lies in the four sensemaking strategies taken by family firm leaders. This study sheds light on the dynamic interplay between family culture, environment, strategies, and CA, offering actionable insights for family firms.
To explore the associations between nutrition literacy (NL) and possible sarcopenia in older Chinese adults. A cross-sectional study was conducted. NL was assessed using a twelve-item short-form NL scale. Possible sarcopenia was identified using SARC-CALF. Logistic regression was used to calculate OR and 95 % CI for NL and the incidence of possible sarcopenia. A total of 1338 older individuals, aged 71·41 (sd 6·84) years, were enrolled in this study. After confounders were adjusted for, older adults in the upper quartile of NL were found to be 52 % less likely to have possible sarcopenia than those in the lower quartile of NL (OR = 0·48, 95 % CI: 0·29, 0·77). The associations between NL and possible sarcopenia were present only in those who lived in rural areas (OR: 0·38, 95 % CI: 0·19, 0·77), had a primary school education or less (OR: 0·21, 95 % CI: 0·09, 0·48), had a monthly income < 3000 RMB (OR: 0·39, 95 % CI: 0·22, 0·70) and had chronic diseases (OR: 0·37, 95 % CI: 0·22, 0·63). Moreover, an interaction effect was observed between having a chronic disease and junior high school education and being in the upper quartile of NL. The prevalence of possible sarcopenia in older Chinese adults is substantial, with prevalence decreasing with increasing NL. Moreover, the association between NL and possible sarcopenia varies by residence type, education level, monthly income and chronic disease experience. Targeted NL interventions are required to prevent and manage sarcopenia in older adults, particularly those with low socio-economic status and chronic diseases.
Retropharyngeal lymphadenectomy is challenging. This study investigated a minimally invasive approach to salvage retropharyngeal lymphadenectomy in patients with nasopharyngeal carcinoma.
Methods
An anatomical study of four fresh cadaveric heads was conducted to demonstrate the relevant details of retropharyngeal lymphadenectomy using the endoscopic transoral medial pterygomandibular fold approach. Six patients with nasopharyngeal cancer with retropharyngeal lymph node recurrence, who underwent retropharyngeal lymphadenectomy with the endoscopic transoral medial pterygomandibular fold technique at the Eye and ENT Hospital of Fudan University from July to December 2021, were included in this study.
Results
The anatomical study demonstrated that the endoscopic transoral medial pterygomandibular fold approach offers a short path and minimally invasive approach to the retropharyngeal space. The surgical procedure was well tolerated by all patients, with no significant post-operative complications.
Conclusion
The endoscopic transoral medial pterygomandibular fold approach is safe and efficient for retropharyngeal lymphadenectomy.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
For individual cultures, findings on regulating embryo density by changing the microdrop volume are contradictory. The aim of this study was to investigate the relationship between embryo density and the developmental outcome of day 3 embryos after adjusting covariates. In total, 1196 embryos from 206 couples who had undergone in vitro fertilization treatment were analyzed retrospectively. Three embryo densities were used routinely, i.e. one embryo in a drop (30 μl/embryo), two embryos in a drop (15 μl/embryo) and three embryos in a drop (10 μl/embryo). Embryo quality on day 3 was evaluated, both the cell number of day 3 embryos and the proportion of successful implantations served as endpoints. Maternal age, paternal age, antral follicles and level of anti-Müllerian hormone, type of infertility, controlled ovarian stimulation protocol, length of stimulation, number of retrieved oocytes, number of zygotes (two pronuclei) and insemination type were covariates and adjusted. After adjusting fully for all covariates, the cell number of day 3 embryos was significantly increased by 0.40 (95% CI 0.00, 0.79; P = 0.048) and 0.78 (95% CI 0.02, 1.54; P = 0.044) in the 15 μl/embryo and 10 μl/embryo group separately, compared with the 30 μl/embryo group. The proportions of implanted embryos were 42.1%, 48.7% and 0.0% in the 30 μl/embryo, 15 μl/embryo and 10 μl/embryo groups respectively. There was no statistical significance (P = 0.22) between the 30 μl/embryo group and the 15 μl/embryo group. After adjusting for confounders that were significant in univariate analysis, embryo density was still not associated with day 3 embryo implantation potential (P > 0.05). In a 30-μl microdrop, culturing embryos with an embryo density of both 15 and 10 μl/embryo increased the cell number of day 3 embryos, which did not benefit embryo implanting potential, compared with individual culture of 30 μl/embryo.
Gut microbiome and dietary patterns have been suggested to be associated with depression/anxiety. However, limited effort has been made to explore the effects of possible interactions between diet and microbiome on the risks of depression and anxiety.
Methods
Using the latest genome-wide association studies findings in gut microbiome and dietary habits, polygenic risk scores (PRSs) analysis of gut microbiome and dietary habits was conducted in the UK Biobank cohort. Logistic/linear regression models were applied for evaluating the associations for gut microbiome-PRS, dietary habits-PRS, and their interactions with depression/anxiety status and Patient Health Questionnaire (PHQ-9)/Generalized Anxiety Disorder-7 (GAD-7) score by R software.
Results
We observed 51 common diet–gut microbiome interactions shared by both PHQ score and depression status, such as overall beef intake × genus Sporobacter [hurdle binary (HB)] (PPHQ = 7.88 × 10−4, Pdepression status = 5.86 × 10−4); carbohydrate × genus Lactococcus (HB) (PPHQ = 0.0295, Pdepression status = 0.0150). We detected 41 common diet–gut microbiome interactions shared by GAD score and anxiety status, such as sugar × genus Parasutterella (rank normal transformed) (PGAD = 5.15 × 10−3, Panxiety status = 0.0347); tablespoons of raw vegetables per day × family Coriobacteriaceae (HB) (PGAD = 6.02 × 10−4, Panxiety status = 0.0345). Some common significant interactions shared by depression and anxiety were identified, such as overall beef intake × genus Sporobacter (HB).
Conclusions
Our study results expanded our understanding of how to comprehensively consider the relationships for dietary habits–gut microbiome interactions with depression and anxiety.
A multicenter study of sharps injuries (SIs) and other blood or body fluid (OBBF) exposures was conducted among 33,156 healthcare workers (HCWs) from 175 hospitals in Anhui, China. In total, 12,178 HCWs (36.7%) had experienced at least 1 SI in the previous 12 months and 8,116 HCWs (24.5%) had experienced at least 1 OBBF exposure during the previous 12 months.
Birth weight influences not only brain development, but also mental health outcomes, including depression, but the underlying mechanism is unclear.
Methods.
The phenotypic data of 12,872–91,009 participants (59.18–63.38% women) from UK Biobank were included to test the associations between the birth weight, depression, and brain volumes through the linear and logistic regression models. As birth weight is highly heritable, the polygenic risk scores (PRSs) of birth weight were calculated from the UK Biobank cohort (154,539 participants, 56.90% women) to estimate the effect of birth weight-related genetic variation on the development of depression and brain volumes. Finally, the mediation analyses of step approach and mediation analysis were used to estimate the role of brain volumes in the association between birth weight and depression. All analyses were conducted sex stratified to assess sex-specific role in the associations.
Result.
We observed associations between birth weight and depression (odds ratio [OR] = 0.968, 95% confidence interval [CI] = 0.957–0.979, p = 2.29 × 10−6). Positive associations were observed between birth weight and brain volumes, such as gray matter (B = 0.131, p = 3.51 × 10−74) and white matter (B = 0.129, p = 1.67 × 10−74). Depression was also associated with brain volume, such as left thalamus (OR = 0.891, 95% CI = 0.850–0.933, p = 4.46 × 10−5) and right thalamus (OR = 0.884, 95% CI = 0.841–0.928, p = 2.67 × 10−5). Additionally, significant mediation effects of brain volume were found for the associations between birth weight and depression through steps approach and mediation analysis, such as gray matter (B = –0.220, p = 0.020) and right thalamus (B = –0.207, p = 0.014).
Conclusions.
Our results showed the associations among birth weight, depression, and brain volumes, and the mediation effect of brain volumes also provide evidence for the sex-specific of associations.
The novel coronavirus disease 2019 (COVID-19) pandemic has spread to over 213 countries and territories. We sought to describe the clinical features of fatalities in patients with severe COVID-19.
Methods:
We conducted an Internet-based retrospective cohort study through retrieving the clinical information of 100 COVID-19 deaths from nonduplicating incidental reports in Chinese provincial and other governmental websites between January 23 and March 10, 2020.
Results:
Approximately 6 of 10 COVID-19 deaths were males (64.0%). The average age was 70.7 ± 13.5 y, and 84% of patients were elderly (over age 60 y). The mean duration from admission to diagnosis was 2.2 ± 3.8 d (median: 1 d). The mean duration from diagnosis to death was 9.9 ± 7.0 d (median: 9 d). Approximately 3 of 4 cases (76.0%) were complicated by 1 or more chronic diseases, including hypertension (41.0%), diabetes (29.0%) and coronary heart disease (27.0%), respiratory disorders (23.0%), and cerebrovascular disease (12.0%). Fever (46.0%), cough (33.0%), and shortness of breath (9.0%) were the most common first symptoms. Multiple organ failure (67.9%), circulatory failure (20.2%), and respiratory failure (11.9%) are the top 3 direct causes of death.
Conclusions:
COVID-19 deaths are mainly elderly and patients with chronic diseases especially cardiovascular disorders and diabetes. Multiple organ failure is the most common direct cause of death.
The present study investigated the association between dietary patterns and hypertension applying the Chinese Dietary Balance Index-07 (DBI-07).
Design:
A cross-sectional study on adult nutrition and chronic disease in Inner Mongolia. Dietary data were collected using 24 h recall over three consecutive days and weighing method. Dietary patterns were identified using principal components analysis. Generalized linear models and multivariate logistic regression models were used to examine the associations between DBI-07 and dietary patterns, and between dietary patterns and hypertension.
Setting:
Inner Mongolia (n 1861).
Participants:
A representative sample of adults aged ≥18 years in Inner Mongolia.
Results:
Four major dietary patterns were identified: ‘high protein’, ‘traditional northern’, ‘modern’ and ‘condiments’. Generalized linear models showed higher factor scores in the ‘high protein’ pattern were associated with lower DBI-07 (βLBS = −1·993, βHBS = −0·206, βDQD = −2·199; all P < 0·001); the opposite in the ‘condiments’ pattern (βLBS = 0·967, βHBS = 0·751, βDQD = 1·718; all P < 0·001). OR for hypertension in the highest quartile of the ‘high protein’ pattern compared with the lowest was 0·374 (95 % CI 0·244, 0·573; Ptrend < 0·001) in males. OR for hypertension in the ‘condiments’ pattern was 1·663 (95 % CI 1·113, 2·483; Ptrend < 0·001) in males, 1·788 (95 % CI 1·155, 2·766; Ptrend < 0·001) in females.
Conclusions:
Our findings suggested a higher-quality dietary pattern evaluated by DBI-07 was related to decreased risk for hypertension, whereas a lower-quality dietary pattern was related to increased risk for hypertension in Inner Mongolia.
Maternal one-carbon metabolism during pregnancy is crucial for fetal development and programming by DNA methylation. However, evidence on one-carbon biomarkers other than folate is lacking. We, therefore, investigated whether maternal plasma methyl donors, that is, choline, betaine and methionine, are associated with birth outcomes. Blood samples were obtained from 115 women during gestation (median 26·3 weeks, 90 % range 22·7–33·0 weeks). Plasma choline, betaine, methionine and dimethylglycine were measured using HPLC-tandem MS. Multivariate linear and logistic regression models were used to estimate the association between plasma biomarkers and birth weight, birth length, the risk of small-for-gestational-age and large-for-gestational-age (LGA). Higher level of maternal betaine was associated with lower birth weight (–130·3 (95 % CI –244·8, –15·9) per 1 sd increment for log-transformed betaine). Higher maternal methionine was associated with lower risk of LGA, and adjusted OR, with 95 % CI for 1 sd increase in methionine concentration was 0·44 (95 % CI 0·21, 0·89). Stratified analyses according to infant sex or maternal plasma homocysteine status showed that reduction in birth weight in relation to maternal betaine was only limited to male infants or to who had higher maternal homocysteine status (≥5·1 µmol/l). Higher maternal betaine status was associated with reduced birth weight. Maternal methionine was inversely associated with LGA risk. These findings are needed to be replicated in future larger studies.
The plerocercoid (sparganum) of Spirometra erinaceieuropaei is the main aetiological agent of human sparganosis. To improve the current knowledge on S. erinaceieuropaei evolution, we performed multi-locus microsatellite typing of sparganum isolates from China for the first time. All available expressed sequence tag (EST) sequences for the Spirometra were downloaded from the GenBank. The identification and localization of microsatellites in ESTs was accomplished by MISA. Based on the selected microsatellites, the genetic structure of 64 sparganum isolates collected from 11 geographical locations in southwest China were investigated through principal component analysis, STRUCTURE analysis and neighbour-joining clustering. A total of 522 non-redundant ESTs containing 915 simple sequence repeats were identified from 12 481 ESTs screened. Five primer pairs were finally selected. Using these loci, a total of 12 alleles were detected in 64 sparganum isolates. Little variability was observed within each of geographical population, especially among isolates derived from Kunming of Yunnan (YN-KM) province. Both STRUCTURE analysis and the clustering analysis supported that two genotypes existed among the sparganum isolates from southwest China. In conclusion, five microsatellite markers were successfully developed, and sparganum population was observed to harbour low genetic variation, further investigation with deeper sampling was needed to elucidate the population structure.
Healthcare-associated infections (HAIs) are a major worldwide public-health problem, but less data are available on the long-term trends of HAIs and antimicrobial use in Eastern China. This study describes the prevalence and long-term trends of HAIs and antimicrobial use in a tertiary care teaching hospital in Hefei, Anhui, China from 2010 to 2017 based on annual point-prevalence surveys. A total of 12 505 inpatients were included; 600 HAIs were recorded in 533 patients, with an overall prevalence of 4.26% and a frequency of 4.80%. No evidence was found for an increasing or decreasing trend in prevalence of HAI over 8 years (trend χ2 = 2.15, P = 0.143). However, significant differences in prevalence of HAI were evident between the surveys (χ2 = 21.14, P < 0.001). The intensive care unit had the highest frequency of HAIs (24.36%) and respiratory tract infections accounted for 62.50% of all cases; Escherichia coli was the most common pathogen (16.67%). A 44.13% prevalence of antimicrobial use with a gradually decreasing trend over time was recorded. More attention should be paid to potential high-risk clinical departments and HAI types with further enhancement of rational antimicrobial use.
Acid mine drainage (AMD) commonly contains elevated concentrations of As(III) and/or As(V) due to oxidation of arsenic-containing sulfides. Bone char has been used as a low-cost filling material for passive treatment. The breakthrough curves of As(III) and As(V) were studied in column experiments conducted at different flow rates, adsorption cycle times, and with different coexisting cations and anions to compare their transport behaviours. The experimental data were fitted by the Convection- Diffusion Equation (CDE) and Thomas model with the aim of obtaining retardation factors of As(III) and As(V) and their maximum adsorption capacities, respectively. The maximum adsorption capacities of As(III) and As(V) are 0.214 and 0.335 mg/g, respectively. Coexisting Mn2+ and Al3+ ions can shorten the equilibrium time of As(V) adsorption from 25 h to 8 h, but they have little effect on As(III). The retardation factors of As(III) and As(V) calculated by the CDE model decrease with adsorption cycles from 37 to 20 and 51 to 32, respectively. The Mn2+ and Al3+ ions could enhance retention ability with adsorption cycle time, especially Mn2+ for As(V). Secondary adsorption phenomena were observed only in breakthrough curves of As(V) in the presence of Mn2+ and Al3+. The competitive influences of coexisting arsenic species is As(V) > As(III). Regeneration experiments using distilled water and NaOH solution were completed to quantify the degree of desorption of both As(III) and As(V). The results show that As(V) adsorbed on bone char has better desorption performance than As(III), and the average degrees of desorption of As(III) and As(V) for three desorption experiments are 75% and 31%, respectively.
This study attempted to investigate and validate whether epididymis cold storage could be a suitable alternative for short-term preservation of spermatozoa. Mouse cauda epididymides and spermatozoa were preserved at 4–8°C from 1 day to 6 weeks. From days 1 to 10, motility and fertility were daily examined when motility loss occurred. From week 1, spermatozoa were used for intracytoplasmic sperm injection (ICSI) at weekly intervals to test their fertility, and spermatozoa DNA integrity was determined by comet assay. We found that motility and progressive motility scores gradually decreased with storage time. In nearly all spermatozoa, DNA integrity was maintained from days 1 to 10, but the percentage of spermatozoa with damaged DNA significantly increased from week 2 to week 6. Spermatozoa retained fertility until day 6, although fertility gradually decreased after day 3. From week 1 to week 5, fertilization rates by ICSI were more than 82.69% but decreased gradually after week 3. We found that spermatozoa preserved in the epididymis at 4–8°C had progressively lower motility, fertility and proportion of undamaged DNA, but could still fertilize oocytes. However, all the parameters of cold-preserved spermatozoa were completely inferior to that from cold-preserved cauda epididymides. The results imply that cold storage of cauda epididymides could be conducive to short-term preservation of spermatozoa, and the cold-stored spermatozoa can resist DNA denaturation, which is necessary for maintaining reproductive ability.
Pro-inflammatory cytokines are critical in mechanisms of muscle atrophy. In addition, asparagine (Asn) is necessary for protein synthesis in mammalian cells. We hypothesised that Asn could attenuate lipopolysaccharide (LPS)-induced muscle atrophy in a piglet model. Piglets were allotted to four treatments (non-challenged control, LPS-challenged control, LPS+0·5 % Asn and LPS+1·0 % Asn). On day 21, the piglets were injected with LPS or saline. At 4 h post injection, piglet blood and muscle samples were collected. Asn increased protein and RNA content in muscles, and decreased mRNA expression of muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1). However, Asn had no effect on the protein abundance of MAFbx and MuRF1. In addition, Asn decreased muscle AMP-activated protein kinase (AMPK) α phosphorylation, but increased muscle protein kinase B (Akt) and Forkhead Box O (FOXO) 1 phosphorylation. Moreover, Asn decreased the concentrations of TNF-α, cortisol and glucagon in plasma, and TNF-α mRNA expression in muscles. Finally, Asn decreased mRNA abundance of muscle toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) signalling-related genes, and regulated their negative regulators. The beneficial effects of Asn on muscle atrophy may be associated with the following: (1) inhibiting muscle protein degradation via activating Akt and inactivating AMPKα and FOXO1; and (2) decreasing the expression of muscle pro-inflammatory cytokines via inhibiting TLR4 and NOD signalling pathways by modulation of their negative regulators.
The authors apologise for errors in the corresponding authors details given on page 1 of the article. Below is the correct information of the corresponding author and email address :
1) Wei-Wei Xue, Huan-Nan Wang, Zhi-Meng Wang, Meng-Xi Qiu, Jing Che, Feng-Jiao Deng* and Jiang-Dong Liu*
2) *All correspondence to: Feng-Jiao Deng and Jiang-Dong Liu. e-mail: fish4@whu.edu.cn
3) All authors are from the same one laboratory. The second laboratory was superfluous and should be deleted.
The family of interferon-inducible transmembrane proteins (IFITMs) plays a crucial role in inhibiting proliferation, promoting homotypic cell adhesion and mediating germ cell development. In the present study, the full-length cDNAs of zebrafish ifitm1 (744 bp) and ifitm3 (702 bp) were obtained by rapid amplification of cDNA ends (RACE). Reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ifitm1 mRNA was expressed in the ovary, testis, brain, muscle, liver and kidney, while ifitm3 mRNA was only detected in the ovary. Based on in situ hybridization, ifitm1 mRNA was found to be strongly expressed in the ooplasm from stage I to stage II and ifitm3 mRNA was also strongly expressed in the ooplasm from stage I to stage II, furthermore ifitm3 expression ultimately localized to the cortex region beneath the plasma membrane of stage IV oocytes. During development, ifitm1 expression was initially detected in the enveloping layer cells and deep layer cells of shield stage embryos. Then, throughout the segmentation phase (10.25–24 hours post-fertilization (hpf)), ifitm1 expression was mainly detected in the head, trunk and tail regions. Unlike ifitm1, ifitm3 expression was initially detected in sphere stage embryos and was then broadly expressed throughout the embryo from the 70% epiboly stage to 24 hpf. Interestingly, ifitm3 was also expressed in primordial germ cells (PGCs) from the bud stage to 24 hpf. This expression analysis indicates that zebrafish ifitm1 may play a critical role in early organogenesis and may perform immune or hematopoietic functions and ifitm3 might be necessary for PGC migration and the formation of female germ cells.