Almost all thin films deposited on a substrate are in a state of stress. Fifty years ago pioneering work concerning the measurement of thin-film stresses was conducted by Brenner and Senderoff. They electroplated a metal film onto a thin metal substrate strip fixed at one end and measured the deflection of the free end of the substrate with a micrometer. Using a beam-bending analysis, they were able to calculate a residual stress from the measured deflection of the bimetallic film-substrate system. A variety of other, more sensitive methods of measuring the curvature of the surface of a film-substrate system have since been developed using, for example, capacitance measurements and interferometry techniques.
When a monochromatic x-ray beam is incident onto a curved single crystal, the diffraction condition is satisfied only for regions of the crystal where the inclination angle with respect to the incident beam exactly matches the Bragg angle. When a parallel beam plane-wave source is used, the diffracted beam from a particular set of (hkl) planes gives rise to a single narrow-contour band. If the crystal is rocked by an angle ω, the contour band will move by a certain distance D. The radius of curvature R of the crystal lattice planes is given by

where θ is the Bragg angle. Equal rocking angles produce equivalent D values for uniform curvature, or varied D values for nonuniform curvature. Using this procedure, detailed contour maps of the angular displacement field of the crystal can be mapped in two dimensions.