The payoff in the Chow–Robbins coin-tossing game is the proportion of heads when you stop. Stopping to maximize expectation was addressed by Chow and Robbins (1965), who proved there exist integers
${k_n}$ such that it is optimal to stop at n tosses when heads minus tails is
${k_n}$. Finding
${k_n}$ was unsolved except for finitely many cases by computer. We prove an
$o(n^{-1/4})$ estimate of the stopping boundary of Dvoretsky (1967), which then proves
${k_n} = \left\lceil {\alpha \sqrt n \,\, - 1/2\,\, + \,\,\frac{{\left( { - 2\zeta (\! -1/2)} \right)\sqrt \alpha }}{{\sqrt \pi }}{n^{ - 1/4}}} \right\rceil $ except for n in a set of density asymptotic to 0, at a power law rate. Here,
$\alpha$ is the Shepp–Walker constant from the Brownian motion analog, and
$\zeta$ is Riemann’s zeta function. An
$n^{ - 1/4}$ dependence was conjectured by Christensen and Fischer (2022). Our proof uses moments involving Catalan and Shapiro Catalan triangle numbers which appear in a tree resulting from backward induction, and a generalized backward induction principle. It was motivated by an idea of Häggström and Wästlund (2013) to use backward induction of upper and lower Value bounds from a horizon, which they used numerically to settle a few cases. Christensen and Fischer, with much better bounds, settled many more cases. We use Skorohod’s embedding to get simple upper and lower bounds from the Brownian analog; our upper bound is the one found by Christensen and Fischer in another way. We use them first for yet many more examples and a conjecture, then algebraically in the tree, with feedback to get much sharper Value bounds near the border, and analytic results. Also, we give a formula that gives the exact optimal stop rule for all n up to about a third of a billion; it uses the analytic result plus terms arrived at empirically.