To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Patients with posttraumatic stress disorder (PTSD) exhibit smaller regional brain volumes in commonly reported regions including the amygdala and hippocampus, regions associated with fear and memory processing. In the current study, we have conducted a voxel-based morphometry (VBM) meta-analysis using whole-brain statistical maps with neuroimaging data from the ENIGMA-PGC PTSD working group.
Methods
T1-weighted structural neuroimaging scans from 36 cohorts (PTSD n = 1309; controls n = 2198) were processed using a standardized VBM pipeline (ENIGMA-VBM tool). We meta-analyzed the resulting statistical maps for voxel-wise differences in gray matter (GM) and white matter (WM) volumes between PTSD patients and controls, performed subgroup analyses considering the trauma exposure of the controls, and examined associations between regional brain volumes and clinical variables including PTSD (CAPS-4/5, PCL-5) and depression severity (BDI-II, PHQ-9).
Results
PTSD patients exhibited smaller GM volumes across the frontal and temporal lobes, and cerebellum, with the most significant effect in the left cerebellum (Hedges’ g = 0.22, pcorrected = .001), and smaller cerebellar WM volume (peak Hedges’ g = 0.14, pcorrected = .008). We observed similar regional differences when comparing patients to trauma-exposed controls, suggesting these structural abnormalities may be specific to PTSD. Regression analyses revealed PTSD severity was negatively associated with GM volumes within the cerebellum (pcorrected = .003), while depression severity was negatively associated with GM volumes within the cerebellum and superior frontal gyrus in patients (pcorrected = .001).
Conclusions
PTSD patients exhibited widespread, regional differences in brain volumes where greater regional deficits appeared to reflect more severe symptoms. Our findings add to the growing literature implicating the cerebellum in PTSD psychopathology.
To assess viewer engagement of a food advertising campaign on the live streaming platform Twitch.tv, a social media platform that allows creators to live stream content and communicate with their audience in real time.
Design:
Observational analysis of chat comments across the Twitch platform containing the word ‘Wendy’s’ or ‘Wendys’ during a 5-day ad campaign compared with two 5-day non-campaign time periods. Comments were categorised as positive, negative or neutral in how their sentiment pertained to the brand Wendy’s.
Setting:
Twitch chatrooms.
Participants:
None.
Results:
There were significantly more chatroom messages related to the Wendy’s brand during the campaign period. When considering all messages, the proportion of messages was statistically different (x2 = 1417·41, P < 0·001) across time periods, with a higher proportion of neutral and positive messages and a lower proportion of negative messages during the campaign compared with the comparison periods. Additionally, the proportion of negative messages following the campaign was lower than before the campaign. When considering only positive and negative messages, the proportion of messages was statistically different (x2 = 366·38, P < 0·001) across each time period with a higher proportion of positive messages and a lower proportion of negative messages during the campaign when compared with the other time periods. Additionally, there was a higher proportion of positive messages and a lower portion of negative messages following the campaign when compared with before the campaign.
Conclusions:
This study demonstrates the impact and sustained impact of a fast-food brand ad campaign on brand engagement on the live streaming platform Twitch.
Seed retention, and ultimately seed shatter, are extremely important for the efficacy of harvest weed seed control (HWSC) and are likely influenced by various agroecological and environmental factors. Field studies investigated seed-shattering phenology of 22 weed species across three soybean [Glycine max (L.) Merr.]-producing regions in the United States. We further evaluated the potential drivers of seed shatter in terms of weather conditions, growing degree days, and plant biomass. Based on the results, weather conditions had no consistent impact on weed seed shatter. However, there was a positive correlation between individual weed plant biomass and delayed weed seed–shattering rates during harvest. This work demonstrates that HWSC can potentially reduce weed seedbank inputs of plants that have escaped early-season management practices and retained seed through harvest. However, smaller individuals of plants within the same population that shatter seed before harvest pose a risk of escaping early-season management and HWSC.
The Hawaiian archipelago was formerly home to one of the most species-rich land snail faunas (> 752 species), with levels of endemism > 99%. Many native Hawaiian land snail species are now extinct, and the remaining fauna is vulnerable. Unfortunately, lack of information on critical habitat requirements for Hawaiian land snails limits the development of effective conservation strategies. The purpose of this study was to examine the plant host preferences of native arboreal land snails in Puʻu Kukui Watershed, West Maui, Hawaiʻi, and compare these patterns to those from similar studies on the islands of Oʻahu and Hawaiʻi. Concordant with studies on other islands, we found that four species from three diverse families of snails in Puʻu Kukui Watershed had preferences for a few species of understorey plants. These were not the most abundant canopy or mid canopy species, indicating that forests without key understorey plants may not support the few remaining lineages of native snails. Preference for Broussaisia arguta among various island endemic snails across all studies indicates that this species is important for restoration to improve snail habitat. As studies examining host plant preferences are often incongruent with studies examining snail feeding, we suggest that we are in the infancy of defining what constitutes critical habitat for most Hawaiian arboreal snails. However, our results indicate that preserving diverse native plant assemblages, particularly understorey plant species, which facilitate key interactions, is critical to the goal of conserving the remaining threatened snail fauna.
Potential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.
Seed shatter is an important weediness trait on which the efficacy of harvest weed seed control (HWSC) depends. The level of seed shatter in a species is likely influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed shatter of eight economically important grass weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after maturity at multiple sites spread across 11 states in the southern, northern, and mid-Atlantic United States. From soybean maturity to 4 wk after maturity, cumulative percent seed shatter was lowest in the southern U.S. regions and increased moving north through the states. At soybean maturity, the percent of seed shatter ranged from 1% to 70%. That range had shifted to 5% to 100% (mean: 42%) by 25 d after soybean maturity. There were considerable differences in seed-shatter onset and rate of progression between sites and years in some species that could impact their susceptibility to HWSC. Our results suggest that many summer annual grass species are likely not ideal candidates for HWSC, although HWSC could substantially reduce their seed output during certain years.
The rocky shores of the north-east Atlantic have been long studied. Our focus is from Gibraltar to Norway plus the Azores and Iceland. Phylogeographic processes shape biogeographic patterns of biodiversity. Long-term and broadscale studies have shown the responses of biota to past climate fluctuations and more recent anthropogenic climate change. Inter- and intra-specific species interactions along sharp local environmental gradients shape distributions and community structure and hence ecosystem functioning. Shifts in domination by fucoids in shelter to barnacles/mussels in exposure are mediated by grazing by patellid limpets. Further south fucoids become increasingly rare, with species disappearing or restricted to estuarine refuges, caused by greater desiccation and grazing pressure. Mesoscale processes influence bottom-up nutrient forcing and larval supply, hence affecting species abundance and distribution, and can be proximate factors setting range edges (e.g., the English Channel, the Iberian Peninsula). Impacts of invasive non-native species are reviewed. Knowledge gaps such as the work on rockpools and host–parasite dynamics are also outlined.
OBJECTIVES/SPECIFIC AIMS: The aims of this study are 2-fold: (1) to determine if maternal schistosomiasis affects maternal immunity to tetanus and/or transplacental transfer of antitetanus toxoid (TT) immunoglobulin G (IgG) from mother to infant and (2) determine the influence of maternal schistosomiasis on infant BCG vaccine immunogenicity. METHODS/STUDY POPULATION: The study will utilize blood samples from a historic cohort of 100 mother-infant pairs from Kisumu, Kenya, a schistosomiasis-endemic area. For the first aim, we will evaluate maternal schistosomal circulating anodic antigen, which has improved sensitivity and specificity to detect active schistosomiasis from serum, and antisoluble egg antigen IgG positivity compared with quantitative maternal anti-TT IgG at delivery and anti-TT IgG cord blood to maternal blood ratio (cord:maternal ratio). For the second aim, we will evaluate association between maternal schistosomiasis as detected by circulating anodic antigen and antisoluble egg antigen IgG at delivery and infant BCG-specific Th1-cytokine positive CD4+ cells at 10 weeks following BCG vaccination at birth. RESULTS/ANTICIPATED RESULTS: We hypothesize that active maternal schistosomiasis will be associated with decreased maternal anti-TT IgG and reduced efficiency of transplacental transfer, as measured by infant cord blood to maternal blood ratio of anti-TT IgG. We also expect that maternal schistosomiasis will be associated with decreased infant immunogenicity to BCG vaccine. DISCUSSION/SIGNIFICANCE OF IMPACT: This is a formative study on infant vaccine immunity using laboratory methodology not previously applied. Understanding infant immunity in the setting of maternal schistosomiasis will inform vaccination strategies and tailor vaccine development in schistosome-endemic areas such as Kenya, where neither TB nor neonatal tetanus have been eradicated. Additionally, our results will inform public health policies to consider integration of antischistosomal agents in antenatal care.
Starbursts are finite periods of intense star formation (SF) that can dramatically impact the evolutionary state of a galaxy. Recent results suggest that starbursts in dwarf galaxies last longer and are distributed over more of the galaxy than previously thought, with star formation efficiencies (SFEs) comparable to spiral galaxies, much higher than those typical of non-bursting dwarfs. This difference might be explainable if the starburst mode is externally triggered by gravitational interactions with other nearby systems. We present new, sensitive neutral hydrogen observations of 18 starburst dwarf galaxies, which are part of the STARburst IRregular Dwarf Survey (STARBIRDS) and each were mapped with the Green Bank Telescope (GBT) and/or Parkes Telescope in order to study the low surface brightness gas distributions, a common tracer for tidal interactions.
Grylloblatta campodeiformis campodeiformis Walker (Grylloblattodea: Grylloblattidae) was commonly collected during summer from trees killed by the mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), in subalpine forests of Alberta, Canada. Gut content analysis revealed that the grylloblattids fed on subcortical invertebrates. This newly reported habitat association shows that this species is not limited to strictly alpine habitats and glacial margins, and thus may be more widespread and common than suggested by earlier reports.
Crop yield loss–weed density relationships critically influence calculation of economic thresholds and the resulting management recommendations made by a bioeconomic model. To examine site-to-site and year-to-year variation in winter Triticum aestivum L. (winter wheat)–Aegilops cylindrica Host. (jointed goatgrass) interference relationships, the rectangular hyperbolic yield loss function was fit to data sets from multiyear field experiments conducted at Colorado, Idaho, Kansas, Montana, Nebraska, Utah, Washington, and Wyoming. The model was fit to three measures of A. cylindrica density: fall seedling, spring seedling, and reproductive tiller densities. Two parameters: i, the slope of the yield loss curve as A. cylindrica density approaches zero, and a, the maximum percentage yield loss as A. cylindrica density becomes very large, were estimated for each data set using nonlinear regression. Fit of the model to the data was better using spring seedling densities than fall seedling densities, but it was similar for spring seedling and reproductive tiller densities based on the residual mean square (RMS) values. Yield loss functions were less variable among years within a site than among sites for all measures of weed density. For the one site where year-to-year variation was observed (Archer, WY), parameter a varied significantly among years, but parameter i did not. Yield loss functions differed significantly among sites for 7 of 10 comparisons. Site-to-site statistical differences were generally due to variation in estimates of parameter i. Site-to-site and year-to-year variation in winter T. aestivum–A. cylindrica yield loss parameter estimates indicated that management recommendations made by a bioeconomic model cannot be based on a single yield loss function with the same parameter values for the winter T. aestivum-producing region. The predictive ability of a bioeconomic model is likely to be improved when yield loss functions incorporating time of emergence and crop density are built into the model's structure.
Geochemical and related studies have been made of near-surface sediments from the River Clyde estuary and adjoining areas, extending from Glasgow to the N, and W as far as the Holy Loch on the W coast of Scotland, UK. Multibeam echosounder, sidescan sonar and shallow seismic data, taken with core information, indicate that a shallow layer of modern sediment, often less than a metre thick, rests on earlier glacial and post-glacial sediments. The offshore Quaternary history can be aligned with onshore sequences, with the recognition of buried drumlins, settlement of muds from quieter water, probably behind an ice dam, and later tidal delta deposits. The geochemistry of contaminants within the cores also indicates shallow contaminated sediments, often resting on pristine pre-industrial deposits at depths less than 1m. The distribution of different contaminants with depth in the sediment, such as Pb (and Pb isotopes), organics and radionuclides, allow chronologies of contamination from different sources to be suggested. Dating was also attempted using microfossils, radiocarbon and 210Pb, but with limited success. Some of the spatial distribution of contaminants in the surface sediments can be related to grain-size variations. Contaminants are highest, both in absolute terms and in enrichment relative to the natural background, in the urban and inner estuary and in the Holy Loch, reflecting the concentration of industrial activity.
Three models that empirically predict crop yield from crop and weed density were evaluated for their fit to 30 data sets from multistate, multiyear winter wheat–jointed goatgrass interference experiments. The purpose of the evaluation was to identify which model would generally perform best for the prediction of yield (damage function) in a bioeconomic model and which model would best fulfill criteria for hypothesis testing with limited amounts of data. Seven criteria were used to assess the fit of the models to the data. Overall, Model 2 provided the best statistical description of the data. Model 2 regressions were most often statistically significant, as indicated by approximate F tests, explained the largest proportion of total variation about the mean, gave the smallest residual sum of squares, and returned residuals with random distribution more often than Models 1 and 3. Model 2 performed less well based on the remaining criteria. Model 3 outperformed Models 1 and 2 in the number of parameters estimated that were statistically significant. Model 1 outperformed Models 2 and 3 in the proportion of regressions that converged on a solution and more readily exhibited an asymptotic relationship between winter wheat yield and both winter wheat and jointed goatgrass density under the constraint of limited data. In contrast, Model 2 exhibited a relatively linear relationship between yield and crop density and little effect of increasing jointed goatgrass density on yield, thus overpredicting yield at high weed densities when data were scarce. Model 2 had statistical properties that made it superior for hypothesis testing; however, Model 1's properties were determined superior for the damage function in the winter wheat–jointed goatgrass bioeconomic model because it was less likely to cause bias in yield predictions based on data sets of minimum size.
Rock-magnetic, paleomagnetic and petrologic properties of samples from the Laschamp and Olby basalt formations in France were studied to aid in determining the validity of the Laschamp geomagnetic field reversal reported by Bonhommet and Babkine. The Laschamp flow contains ilmenomagnetite, with partial alteration of the magnetite to hematite. Ilmenomagnetite in the Olby flow has largely recrystallized at high temperatures to a composite mozaic intergrowth of pseudobrookite, titanohematite and magnesioferrite, with rare residual magnetite and lamellae of ilmenite. The remanent magnetization is stable and resides primarily in single-domain magnetite particles. Our results indicate that the magnetizations of the Laschamp and Olby flows faithfully record the direction of the ambient magnetic field in which they cooled.
Whitebark pine, Pinus albicaulis Engelmann (Pinaceae), a foundational species of North American subalpine ecosystems, is endangered across its range and continued decline is inevitable. Little is known about the invertebrate fauna associated with this species which, if specific to whitebark pine, may also be threatened or endangered. We compared the composition of saproxylic beetle assemblages associated with whitebark pine and co-occurring lodgepole pine, Pinus contorta latifolia (Engelmann) Critchfield (Pinaceae), recently killed by mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), in subalpine forests in Alberta, Canada. Redundancy and rarefaction analyses revealed that beetle assemblage composition was influenced by snag class (i.e., time since death) but differed little among the two pine species within snag classes. However, a subset of the assemblage known to be associated with the MPB differed significantly in composition between the two pines. No common species were exclusively associated with whitebark pines; however, seven species were rarely collected only on whitebark pine. With the possible exception of these rare species, felling and burning infested whitebark pines to control the MPB will not likely endanger saproxylic beetles associated with this tree.