We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To describe current Ebola treatment center (ETC) locations, their capacity to care for Ebola virus disease patients, and infection control infrastructure features.
DESIGN
A 19-question survey was distributed electronically in April 2015. Responses were collected via email by June 2015 and analyzed in an electronic spreadsheet.
SETTING
The survey was sent to and completed by site representatives of each ETC.
PARTICIPANTS
The survey was sent to all 55 ETCs; 47 (85%) responded.
RESULTS
Of the 47 responding ETCs, there are 84 isolation beds available for adults and 91 for children; of these pediatric beds, 35 (38%) are in children’s hospitals. In total, the simultaneous capacity of the 47 reporting ETCs is 121 beds. On the basis of the current US census, there are 0.38 beds per million population. Most ETCs have negative pressure isolation rooms, anterooms, and a process for category A waste sterilization, although only 11 facilities (23%) have the capability to sterilize infectious waste on site.
CONCLUSIONS
Facilities developed ETCs on the basis of Centers for Disease Control and Prevention guidance, but specific capabilities are not mandated at this present time. Owing to the complex and costly nature of Ebola virus disease treatment and variability in capabilities from facility to facility, in conjunction with the lack of regulations, nationwide capacity in specialized facilities is limited. Further assessments should determine whether ETCs can adapt to safely manage other highly infectious disease threats.
Infect. Control Hosp. Epidemiol. 2016;37(3):313–318
This study evaluated the efficacy of gaseous chlorine dioxide (ClO2) for extermination of bedbugs (Cimex lectularius and Citnex hemipterus).
Background.
Bedbugs have received attention because of recent outbreaks. Bedbug eradication is difficult and often requires a time-consuming multifaceted approach.
Setting.
Laboratory and hospital room.
Methods.
Bedbugs were exposed to concentrations of ClO2 of 362, 724, and 1,086 parts per million (ppm) in an exposure chamber. Bedbug mortality was then evaluated. The ability of ClO2 to penetrate various spaces in a hospital room was evaluated using Bacillus atropheus as a surrogate organism.
Results.
Concentrations of 1,086 and 724 ppm of ClO2 yielded 100% bedbug mortality assessed immediately after exposure. Live young were not observed for any eggs exposed to ClO2 gas. ClO2 at a concentration of 362 ppm for 1,029 parts per million hours (ppm-hours) achieved 100% mortality 6 hours after exposure. A ClO2 concentration of 362 ppm for 519 ppm-hours had 100% mortality 18 hours after exposure. Up to a 6-log reduction in B. atropheus spores was achieved using similar concentrations of ClO2 in a hospital room, indicating that the concentrations needed to kill bedbugs can be achieved throughout a hospital room.
Conclusions.
ClO2 is effective at killing bedbugs in the laboratory, and similar concentrations of ClO2 gas can be achieved in a hospital room. ClO2 can be removed from the room without residuals.