We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Aircraft with bio-inspired flapping wings that are operated in low-density atmospheric environments encounter unique challenges associated with the low density. The low density results in the requirement of high operating velocities of aircraft to generate sufficient lift resulting in significant compressibility effects. Here, we perform numerical simulations to investigate the compressibility effects on the lift generation of a bio-inspired wing during hovering flight using an immersed boundary method. The aim of this study is to develop a scaling law to understand how the lift is influenced by the Reynolds and Mach numbers, and the associated flow physics. Our simulations have identified a critical Mach number of approximately $0.6$ defined by the average wing-tip velocity. When the Mach number is lower than 0.6, compressibility does not have significant effects on the lift or flow fields, while when the Mach number is greater than $0.6$, the lift coefficient decreases linearly with increasing Mach number, due to the drastic change in the pressure on the wing surface caused by unsteady shock waves. Moreover, the decay rate is dependent on the Reynolds number and the angle of attack. Based on these observations, we propose a scaling law for the lift of a hovering flapping wing by considering compressible and viscous effects, with the scaled lift showing excellent collapse.
Young stellar objects (YSOs) are protostars that exhibit bipolar outflows fed by accretion disks. Theories of the transition between disk and outflow often involve a complex magnetic field structure thought to be created by the disk coiling field lines at the jet base; however, due to limited resolution, these theories cannot be confirmed with observation and thus may benefit from laboratory astrophysics studies. We create a dynamically similar laboratory system by driving a $\sim$1 MA current pulse with a 200 ns rise through a $\approx$2 mm-tall Al cylindrical wire array mounted to a three-dimensional (3-D)-printed, stainless steel scaffolding. This system creates a plasma that converges on the centre axis and ejects cm-scale bipolar outflows. Depending on the chosen 3-D-printed load path, the system may be designed to push the ablated plasma flow radially inwards or off-axis to make rotation. In this paper, we present results from the simplest iteration of the load which generates radially converging streams that launch non-rotating jets. The temperature, velocity and density of the radial inflows and axial outflows are characterized using interferometry, gated optical and ultraviolet imaging, and Thomson scattering diagnostics. We show that experimental measurements of the Reynolds number and sonic Mach number in three different stages of the experiment scale favourably to the observed properties of YSO jets with $Re\sim 10^5\unicode{x2013}10^9$ and $M\sim 1\unicode{x2013}10$, while our magnetic Reynolds number of $Re_M\sim 1\unicode{x2013}15$ indicates that the magnetic field diffuses out of our plasma over multiple hydrodynamical time scales. We compare our results with 3-D numerical simulations in the PERSEUS extended magnetohydrodynamics code.
England's primary care service for psychological therapy (Improving Access to Psychological Therapies [IAPT]) treats anxiety and depression, with a target recovery rate of 50%. Identifying the characteristics of patients who achieve recovery may assist in optimizing future treatment. This naturalistic cohort study investigated pre-therapy characteristics as predictors of recovery and improvement after IAPT therapy.
Methods
In a cohort of patients attending an IAPT service in South London, we recruited 263 participants and conducted a baseline interview to gather extensive pre-therapy characteristics. Bayesian prediction models and variable selection were used to identify baseline variables prognostic of good clinical outcomes. Recovery (primary outcome) was defined using (IAPT) service-defined score thresholds for both depression (Patient Health Questionnaire [PHQ-9]) and anxiety (Generalized Anxiety Disorder [GAD-7]). Depression and anxiety outcomes were also evaluated as standalone (PHQ-9/GAD-7) scores after therapy. Prediction model performance metrics were estimated using cross-validation.
Results
Predictor variables explained 26% (recovery), 37% (depression), and 31% (anxiety) of the variance in outcomes, respectively. Variables prognostic of recovery were lower pre-treatment depression severity and not meeting criteria for obsessive compulsive disorder. Post-therapy depression and anxiety severity scores were predicted by lower symptom severity and higher ratings of health-related quality of life (EuroQol questionnaire [EQ5D]) at baseline.
Conclusion
Almost a third of the variance in clinical outcomes was explained by pre-treatment symptom severity scores. These constructs benefit from being rapidly accessible in healthcare services. If replicated in external samples, the early identification of patients who are less likely to recover may facilitate earlier triage to alternative interventions.
The effects of the evolution of vortices on the aeroacoustics generated by a hovering wing are numerically investigated by using a hybrid method of an immersed boundary–finite difference method for the three-dimensional incompressible flows and a simplified model based on the Ffowcs Williams-Hawkings acoustic analogy. A low-aspect-ratio ($AR=1.5$) rectangular wing at low Reynolds ($Re=1000$) and Mach ($M=0.04$) numbers is investigated. Based on the simplified model, the far-field acoustics is shown to be dominated by the time derivative of the pressure on the wing surface. Results show that vortical structure evolution in the flow fields, which is described by the divergence of the convection term of the incompressible Navier–Stokes equations in a body-fixed reference frame, determines the time derivative of the surface pressure and effectively the far-field acoustics. It dominates over the centrifugal acceleration and Coriolis acceleration terms in determining the time derivative of the surface pressure. The position of the vortex is also found to affect the time derivative of the surface pressure. A scaling analysis reveals that the vortex acoustic source is scaled with the cube of the flapping frequency.
Flow control of a low-aspect-ratio flat-plate heaving wing at an average angle of attack of $10^{\circ }$ by a steady-blowing jet is numerically studied by using a feedback immersed boundary–lattice Boltzmann method. Blowing jets at the leading edge, mid-chord and trailing edge are considered. The wing enjoys the highest lift production with the trailing-edge downstream blowing jet, which improves the average lift by 50.0 % at $Re = 1000$ and 22.9 % at $Re = 5000$ through the enhancement of the tip vortex circulation caused by the increase in the mass flux of the shear layer at the wing tips. This increase in mass flux decreases as $Re$ increases from 1000 to 5000 due to its self-limiting mechanism. A mid-chord vertical blowing jet induces a middle vortex which enhances the lift production but the enhancement is smaller than that of trailing-edge downstream blowing jet. Other jet arrangements do not significantly increase the lift coefficient, but the mid-chord upstream blowing jet experiences a significant reduction in the drag coefficient, leading to an increase of 50.6 % in the average lift-to-drag ratio. The effectiveness of the flow control is not significantly affected by the aspect ratio.
Motor neuron disease (MND) is a progressive, fatal, neurodegenerative condition that affects motor neurons in the brain and spinal cord, resulting in loss of the ability to move, speak, swallow and breathe. Acceptance and commitment therapy (ACT) is an acceptance-based behavioural therapy that may be particularly beneficial for people living with MND (plwMND). This qualitative study aimed to explore plwMND’s experiences of receiving adapted ACT, tailored to their specific needs, and therapists’ experiences of delivering it.
Method:
Semi-structured qualitative interviews were conducted with plwMND who had received up to eight 1:1 sessions of adapted ACT and therapists who had delivered it within an uncontrolled feasibility study. Interviews explored experiences of ACT and how it could be optimised for plwMND. Interviews were audio recorded, transcribed and analysed using framework analysis.
Results:
Participants were 14 plwMND and 11 therapists. Data were coded into four over-arching themes: (i) an appropriate tool to navigate the disease course; (ii) the value of therapy outweighing the challenges; (iii) relevance to the individual; and (iv) involving others. These themes highlighted that ACT was perceived to be acceptable by plwMND and therapists, and many participants reported or anticipated beneficial outcomes in the future, despite some therapeutic challenges. They also highlighted how individual factors can influence experiences of ACT, and the potential benefit of involving others in therapy.
Conclusions:
Qualitative data supported the acceptability of ACT for plwMND. Future research and clinical practice should address expectations and personal relevance of ACT to optimise its delivery to plwMND.
Key learning aims
(1) To understand the views of people living with motor neuron disease (plwMND) and therapists on acceptance and commitment therapy (ACT) for people living with this condition.
(2) To understand the facilitators of and barriers to ACT for plwMND.
(3) To learn whether ACT that has been tailored to meet the specific needs of plwMND needs to be further adapted to potentially increase its acceptability to this population.
Cereal rye (Secale cereale L.) cover crop and preemergence herbicides are important components of an integrated weed management program for waterhemp [Amaranthus tuberculatus (Moq.) Sauer] and Palmer amaranth (Amaranthus palmeri S. Watson) management in soybean [Glycine max (L.) Merr.]. Accumulating adequate cereal rye biomass for effective suppression of Amaranthus spp. can be challenging in the upper Midwest due to the short window for cereal rye growth in a corn–soybean rotation. Farmers are adopting the planting green system to optimize cereal rye biomass production and weed suppression. This study aimed to evaluate the feasibility of planting soybean green when integrated with preemergence herbicides for the control of Amaranthus spp. under two soybean planting time frames. The study was conducted across 19 site-years in the United States over the 2021 and 2022 growing seasons. Factors included cover crop management practices (“no-till,” “cereal rye early-term,” and “cereal rye plant-green”), soybean planting times (“early” and “late”), and use of preemergence herbicides (“NO PRE” and “YES PRE”). Planting soybean green increased cereal rye biomass production by 33% compared with early termination. Greater cereal rye biomass production when planting green provided a 44% reduction in Amaranthus spp. density compared with no-till. The use of preemergence herbicides also resulted in a 68% reduction in Amaranthus spp. density compared with NO PRE. Greater cereal rye biomass produced when planting green reduced soybean stand, which directly reduced soybean yield in some site-years. Planting soybean green is a feasible management practice to optimize cereal rye biomass production, which, combined with preemergence herbicides, provided effective Amaranthus spp. management. Soybean stand was a key factor in maintaining soybean yields compared with no-till when planting green. Farmers should follow best management recommendations for proper planter and equipment setup to ensure effective soybean establishment under high levels of cereal rye biomass when planting green.
Data on associations between inflammation and depressive symptoms largely originate from high income population settings, despite the greatest disease burden in major depressive disorder being attributed to populations in lower-middle income countries (LMICs).
Aims
We assessed the prevalence of low-grade inflammation in adults with treatment-resistant depression (TRD) in Pakistan, an LMIC, and investigated associations between peripheral C-reactive protein (CRP) levels and depressive symptoms.
Method
This is a secondary analysis of two randomised controlled trials investigating adjunctive immunomodulatory agents (minocycline and simvastatin) for Pakistani adults with TRD (n = 191). Logistic regression models were built to assess the relationship between pre-treatment CRP (≥ or <3 mg/L) and individual depressive symptoms measured using the Hamilton Depression Rating Scale. Descriptive statistics and regression were used to assess treatment response for inflammation-associated symptoms.
Results
High plasma CRP (≥3 mg/L) was detected in 87% (n = 146) of participants. Early night insomnia (odds ratio 2.33, 95% CI 1.16–5.25), early morning waking (odds ratio 2.65, 95% CI 1.29–6.38) and psychic anxiety (odds ratio 3.79, 95% CI 1.39–21.7) were positively associated, while gastrointestinal (odds ratio 0.38, 95% CI 0.14–0.86) and general somatic symptoms (odds ratio 0.34, 95% CI 0.14–0.74) were negatively associated with inflammation. Minocycline, but not simvastatin, improved symptoms positively associated with inflammation.
Conclusions
The prevalence of inflammation in this LMIC sample with TRD was higher than that reported in high income countries. Insomnia and anxiety symptoms may represent possible targets for personalised treatment with immunomodulatory agents in people with elevated CRP. These findings require replication in independent clinical samples.
We aimed to co-design an intervention optimising the benefits of online arts and culture for mental health in young people for subsequent testing in a trial. Co-design followed the double diamond phases of design, discover, define, develop and deliver.
Results
Navigating the views of all co-designers to produce a testable resource demanded in-depth understanding, and frequent iterations in multiple modalities of the theoretical basis of the intervention, amplification of youth voice and commitment to a common goal.
Clinical implications
Co-design with a broad range of collaborators with a shared vision was valued by young co-designers and produced an effective intervention. Co-design allowed the theoretical basis to be followed and refined to create an engaging, practical and testable web experience, aiming to optimise the mental health benefits of online arts and culture for young people in a randomised controlled trial.
Parasitic gastrointestinal nematodes pose significant health risks to humans, livestock, and companion animals, and their control relies heavily on the use of anthelmintic drugs. Overuse of these drugs has led to the emergence of resistant nematode populations. Herein, a naturally occurring isolate (referred to as BCR) of the dog hookworm, Ancylostoma caninum, that is resistant to 3 major classes of anthelmintics is characterized. Various drug assays were used to determine the resistance of BCR to thiabendazole, ivermectin, moxidectin and pyrantel pamoate. When compared to a drug-susceptible isolate of A. caninum, BCR was shown to be significantly resistant to all 4 of the drugs tested. Multiple single nucleotide polymorphisms have been shown to impart benzimidazole resistance, including the F167Y mutation in the β-tubulin isotype 1 gene, which was confirmed to be present in BCR through molecular analysis. The frequency of the resistant allele in BCR was 76.3% following its first passage in the lab, which represented an increase from approximately 50% in the founding hookworm population. A second, recently described mutation in codon 134 (Q134H) was also detected at lower frequency in the BCR population. Additionally, BCR exhibits an altered larval activation phenotype compared to the susceptible isolate, suggesting differences in the signalling pathways involved in the activation process which may be associated with resistance. Further characterization of this isolate will provide insights into the mechanisms of resistance to macrocyclic lactones and tetrahydropyrimidine anthelmintics.
As part of the Research Domain Criteria (RDoC) initiative, the NIMH seeks to improve experimental measures of cognitive and positive valence systems for use in intervention research. However, many RDoC tasks have not been psychometrically evaluated as a battery of measures. Our aim was to examine the factor structure of 7 such tasks chosen for their relevance to schizophrenia and other forms of serious mental illness. These include the n-back, Sternberg, and self-ordered pointing tasks (measures of the RDoC cognitive systems working memory construct); flanker and continuous performance tasks (measures of the RDoC cognitive systems cognitive control construct); and probabilistic learning and effort expenditure for reward tasks (measures of reward learning and reward valuation constructs).
Participants and Methods:
The sample comprised 286 cognitively healthy participants who completed novel versions of all 7 tasks via an online recruitment platform, Prolific, in the summer of 2022. The mean age of participants was 38.6 years (SD = 14.5, range 18-74), 52% identified as female, and stratified recruitment ensured an ethnoracially diverse sample. Excluding time for instructions and practice, each task lasted approximately 6 minutes. Task order was randomized. We estimated optimal scores from each task including signal detection d-prime measures for the n-back, Sternberg, and continuous performance task, mean accuracy for the flanker task, win-stay to win-shift ratio for the probabilistic learning task, and trials completed for the effort expenditure for reward task. We used parallel analysis and a scree plot to determine the number of latent factors measured by the 7 task scores. Exploratory factor analysis with oblimin (oblique) rotation was used to examine the factor loading matrix.
Results:
The scree plot and parallel analyses of the 7 task scores suggested three primary factors. The flanker and continuous performance task both strongly loaded onto the first factor, suggesting that these measures are strong indicators of cognitive control. The n-back, Sternberg, and self-ordered pointing tasks strongly loaded onto the second factor, suggesting that these measures are strong indicators of working memory. The probabilistic learning task solely loaded onto the third factor, suggesting that it is an independent indicator of reinforcement learning. Finally, the effort expenditure for reward task modestly loaded onto the second but not the first and third factors, suggesting that effort is most strongly related to working memory.
Conclusions:
Our aim was to examine the factor structure of 7 RDoC tasks. Results support the RDoC suggestion of independent cognitive control, working memory, and reinforcement learning. However, effort is a factorially complex construct that is not uniquely or even most strongly related to positive valance. Thus, there is reason to believe that the use of at least 6 of these tasks are appropriate measures of constructs such as working memory, reinforcement learning and cognitive control.
During the COVID-19 pandemic, research organizations accelerated adoption of technologies that enable remote participation. Now, there’s a pressing need to evaluate current decentralization practices and develop appropriate research, education, and operations infrastructure. The purpose of this study was to examine current adoption of decentralization technologies in a sample of clinical research studies conducted by academic research organizations (AROs).
Methods:
The setting was three data coordinating centers in the U.S. These centers initiated coordination of 44 clinical research studies during or after 2020, with national recruitment and enrollment, and entailing coordination between one and one hundred sites. We determined the decentralization technologies used in these studies.
Results:
We obtained data for 44/44 (100%) trials coordinated by the three centers. Three technologies have been adopted across nearly all studies (98–100%): eIRB, eSource, and Clinical Trial Management Systems. Commonly used technologies included e-Signature (32/44, 73%), Online Payments Portals (26/44, 59%), ePROs (23/44, 53%), Interactive Response Technology (22/44, 50%), Telemedicine (19/44, 43%), and eConsent (18/44, 41%). Wearables (7/44,16%) and Online Recruitment Portals (5/44,11%) were less common. Rarely utilized technologies included Direct-to-Patient Portals (1/44, 2%) and Home Health Nurse Portals (1/44, 2%).
Conclusions:
All studies incorporated some type of decentralization technology, with more extensive adoption than found in previous research. However, adoption may be strongly influenced by institution-specific IT and informatics infrastructure and support. There are inherent needs, responsibilities, and challenges when incorporating decentralization technology into a research study, and AROs must ensure that infrastructure and informatics staff are adequate.
The power exchange between fluid and structure plays a significant role in the force production and flight efficiency of flapping wings in insects and artificial flyers. This work numerically investigates the performance of flapping wings by using a high-fidelity fluid–structure interaction solver. Simulations are conducted by varying the hinge flexibility (measured by the Cauchy number, $Ch$, i.e. the ratio between aerodynamic and torsional elastic forces) and the wing shape (quantified by the radius of the first moment of area, $\bar {r}_1$). Results show that the lift production is optimal at $0.05 < Ch \leq 0.2$ and larger $\bar {r}_1$ where the minimum angle of attack is around $45^\circ$ at midstroke. The power economy is maximised for wings with lower $\bar {r}_1$ near $Ch=0.2$. Power analysis indicates that the optimal performance measured by the power economy is obtained for those cases where two important power synchronisations occur: anti-synchronisation of the pitching elastic power and the pitching aerodynamic and inertial powers and nearly in-phase synchronisation of the flapping aerodynamic power and the total input power of the system. While analysis of the kinematics for the different wing shapes and hinge stiffnesses reveals that the optimal performance occurs when the timing of pitch and stroke reversals are matched, thus supporting the effective transfer of input power from flapping to passive pitching and into the fluid. These results suggest that careful optimisation between wing shapes and hinge properties can allow insects and robots to exploit the passive dynamics to improve flight performance.
We recently reported on the radio-frequency attenuation length of cold polar ice at Summit Station, Greenland, based on bi-static radar measurements of radio-frequency bedrock echo strengths taken during the summer of 2021. Those data also allow studies of (a) the relative contributions of coherent (such as discrete internal conducting layers with sub-centimeter transverse scale) vs incoherent (e.g. bulk volumetric) scattering, (b) the magnitude of internal layer reflection coefficients, (c) limits on signal propagation velocity asymmetries (‘birefringence’) and (d) limits on signal dispersion in-ice over a bandwidth of ~100 MHz. We find that (1) attenuation lengths approach 1 km in our band, (2) after averaging 10 000 echo triggers, reflected signals observable over the thermal floor (to depths of ~1500 m) are consistent with being entirely coherent, (3) internal layer reflectivities are ≈–60$\to$–70 dB, (4) birefringent effects for vertically propagating signals are smaller by an order of magnitude relative to South Pole and (5) within our experimental limits, glacial ice is non-dispersive over the frequency band relevant for neutrino detection experiments.
The U.S. Department of Agriculture–Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed–crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America’s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency’s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being.
We review impacts of climate change, energy scarcity, and economic frameworks on sustainability of natural and human systems in coastal zones, areas of high biodiversity, productivity, population density, and economic activity. More than 50% of the global population lives within 200 km of a coast, mostly in tropical developing countries. These systems developed during stable Holocene conditions. Changes in global forcings are threatening sustainability of coastal ecosystems and populations. During the Holocene, the earth warmed and became wetter and more productive. Climate changes are impacting coastal systems via sea level rise, stronger tropical cyclones, changes in basin inputs, and extreme weather events. These impacts are passing tipping points as the fossil fuel-powered industrial-technological-agricultural revolution has overwhelmed the source–sink functions of the biosphere and degraded natural systems. The current status of industrialized society is primarily the result of fossil fuel (FF) use. FFs provided more than 80% of global primary energy and are projected to decline to 50% by mid-century. This has profound implications for societal energy requirements, including the transition to a renewable economy. The development of the industrial economy allowed coastal social systems to become spatially separated from their dominant energy and food sources. This will become more difficult to maintain with the fading of cheap energy. It seems inevitable that past growth in energy use, resource consumption, and economic growth cannot be sustained, and coastal areas are in the forefront of these challenges. Rapid planning and cooperation are necessary to minimize impacts of the changes associated with the coming transition. There is an urgent need for a new economic framework to guide society through the transition as mainstream neoclassical economics is not based on natural sciences and does not adequately consider either the importance of energy or the work of nature.
Anthropogenic noise has been related to stress in captive animals; despite this there have been few studies on animal welfare assessment in walk-through zoo enclosures. We aimed to investigate the behavioural effects of noise on a male-female pair of two-toed sloths (Choloepus didactylus), housed in a walk-through enclosure in a zoo in the UK. The animals were filmed for 24 h per day, during three days per week, including days with potential low and high flow of visitors, for three weeks. Sound pressure measurement was performed four times each collection day (twice in the morning, once at noon and once in the afternoon), for 15 min per session, using a sound level meter. The number of visitors passing the enclosure during each session was also recorded. The videos were analysed using focal sampling, with continuous recording of behaviour. Correlations between noise and the behaviours expressed during, and in the 24 h after the acoustic recording, were investigated. The number of visitors correlated with the acoustic parameters. At the moment of exposure, higher levels of noise correlated with decreased inactivity, and longer expression of locomotion and maintenance behaviours for the male; the female spent more time inside a box in these moments. During the 24 h hours after exposure to loud noise, the female showed no behavioural changes while the male tended to reduce foraging. The behavioural changes observed in both individuals have already been reported in other species, in response to stressful events. Our study indicates the need for a good acoustic management in walk-through zoo enclosures where sloths are housed.
At the start of a new community perinatal mental health service in Scotland we sought the opinions and aspirations of professional and lay stakeholders. A student elective project supported the creation of an anonymous 360-degree online survey of a variety of staff and people with lived experience of suffering from or managing perinatal mental health problems. The survey was designed and piloted with trainees and volunteer patients.
Results
A rich variety of opinions was gathered from the 60 responses, which came from a reasonably representative sample. Respondents provided specific answers to key questions and wrote free-text recommendations and concerns to inform service development.
Clinical implications
There is clear demand for the new expanded service, with strong support for provision of a mother and baby unit in the North of Scotland. The digital survey method could be adapted to generate future surveys to review satisfaction with service development and generate ideas for further change.