We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
3q29 deletion syndrome (3q29del) is a rare (~1:30 000) genomic disorder associated with a wide array of neurodevelopmental and psychiatric phenotypes. Prior work by our team identified clinically significant executive function (EF) deficits in 47% of individuals with 3q29del; however, the nuances of EF in this population have not been described.
Methods
We used the Behavior Rating Inventory of Executive Function (BRIEF) to perform the first in-depth assessment of real-world EF in a cohort of 32 individuals with 3q29del (62.5% male, mean age = 14.5 ± 8.3 years). All participants were also evaluated with gold-standard neuropsychiatric and cognitive assessments. High-resolution structural magnetic resonance imaging was performed on a subset of participants (n = 24).
Results
We found global deficits in EF; individuals with 3q29del scored higher than the population mean on the BRIEF global executive composite (GEC) and all subscales. In total, 81.3% of study subjects (n = 26) scored in the clinical range on at least one BRIEF subscale. BRIEF GEC T scores were higher among 3q29del participants with a diagnosis of attention deficit/hyperactivity disorder (ADHD), and BRIEF GEC T scores were associated with schizophrenia spectrum symptoms as measured by the Structured Interview for Psychosis-Risk Syndromes. BRIEF GEC T scores were not associated with cognitive ability. The BRIEF-2 ADHD form accurately (sensitivity = 86.7%) classified individuals with 3q29del based on ADHD diagnosis status. BRIEF GEC T scores were correlated with cerebellar white matter and subregional cerebellar cortex volumes.
Conclusions
Together, these data expand our understanding of the phenotypic spectrum of 3q29del and identify EF as a core feature linked to both psychiatric and neuroanatomical features of the syndrome.
Genetic analyses which are relevant to plant and animal studies, rather than human populations, have specific limitations in relation to the genetics of schizophrenia. Some reviewers of family studies of schizophrenia have drawn the conclusion that schizophrenia and bipolar disorder do not share the same genetic etiologies whereas others argue that they often do. Considerable effort has been focused on genetic linkage analysis of schizophrenia employing genetic markers in multiply affected families to identify which chromosomal regions harbor susceptibility genes. This approach must take into account the complication of heterogeneity of linkage in which a number of susceptibility genes localized to different chromosomes contribute to the development of schizophrenia. The chapter describes a selection of genes that have been implicated in susceptibility to schizophrenia by cytogenetic, linkage and/or association studies. Twin and adoption studies have shown that the family environment has no influence on the etiology of schizophrenia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.