We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Kim-Anh Do, University of Texas, MD Anderson Cancer Center,Peter Müller, Swiss Federal Institute of Technology, Zürich,Marina Vannucci, Rice University, Houston
The concept of sparsity is more and more central to practical data analysis and inference with increasingly high-dimensional data. Gene expression genomics is a key example context. As part of a series of projects that has developed Bayesian methodology for large-scale regression, ANOVA, and latent factor models, we have extended traditional Bayesian “variable selection” priors and modelling ideas to new hierarchical sparsity priors that are providing substantial practical gains in addressing false discovery and isolating significant gene-specific parameters/effects in highly multivariate studies involving thousands of genes. We discuss and review these developments, in the contexts of multivariate regression, ANOVA, and latent factor models for multivariate gene expression data arising in either observational or designed experimental studies. The development includes the use of sparse regression components to provide gene-sample-specific normalisation/correction based on control and housekeeping factors, an important general issue and one that can be critical – and critically misleading if ignored – in many gene expression studies. Two rich data sets are used to provide context and illustration. The first data set arises from a gene expression experiment designed to investigate the transcriptional response – in terms of responsive gene subsets and their expression signatures – to interventions that upregulate a series of key oncogenes. The second data set is observational, breast cancer tumour-derived data evaluated utilising a sparse latent factor model to define and isolate factors underlying the hugely complex patterns of association in gene expression patterns. We also mention software that implements these and other models and methods in one comprehensive framework.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.