We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
An active feedback flow control theory of the axisymmetric vortex breakdown process in incompressible swirling flows in a finite-length straight circular pipe is developed. Flow injection distributed along the pipe wall is used as the controller. The flow is subjected to non-periodic inlet and outlet conditions where the inlet profiles of the axial velocity, circumferential velocity and azimuthal vorticity are prescribed, along with no radial velocity at the outlet. A long-wave asymptotic analysis at near-critical swirl ratios, which involves a rescaling of the axial distance and time, results in a model problem for the dynamics and the nonlinear control of both inviscid and high-Reynolds-number ($\mathit{Re}$) flows. The approach provides the bifurcation diagram of steady states and the stability characteristics of these states. In addition, an energy analysis of the controlled flow dynamics suggests a feedback control law that relates the flow injection to the evolving maximum radial velocity at the inlet. Computed examples of the flow dynamics based on the full Euler and Navier–Stokes formulations at various swirl levels demonstrate the evolution to near-steady breakdown states when swirl is above a critical level that depends on $\mathit{Re}$. Moreover, applying the proposed feedback control law during flow evolution shows for the first time the successful and robust elimination of the breakdown states and flow stabilization on an almost columnar state for a wide range of swirl (up to at least 30 %) above critical. The feedback control cuts the natural feed-forward mechanism of the breakdown process. Specifically, in the case of high-$\mathit{Re}$ flows, the control approach establishes a branch of columnar states for all swirl levels studied, where in the natural flow dynamics no such states exist. The present theory is limited to the control of axisymmetric flows in pipes where the wall boundary layer is thin and attached and does not interact with the flow in the bulk.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.