We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To describe the epidemiology of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) and Klebsiella pneumoniae (ESBL-KP) infections
DESIGN
Retrospective cohort
SETTING
Inpatient care at community hospitals
PATIENTS
All patients with ESBL-EC or ESBL-KP infections
METHODS
ESBL-EC and ESBL-KP infections from 26 community hospitals were prospectively entered into a centralized database from January 2009 to December 2014.
RESULTS
A total of 925 infections caused by ESBL-EC (10.5 infections per 100,000 patient days) and 463 infections caused by ESBL-KP (5.3 infections per 100,000 patient days) were identified during 8,791,243 patient days of surveillance. The incidence of ESBL-EC infections increased from 5.28 to 10.5 patients per 100,000 patient days during the study period (P=.006). The number of community hospitals with ESBL-EC infections increased from 17 (65%) in 2009 to 20 (77%) in 2014. The median ESBL-EC infection rates among individual hospitals with ≥1 ESBL-EC infection increased from 11.1 infections/100,000 patient days (range, 2.2–33.9 days) in 2009 to 22.1 infections per 100,000 patient days (range, 0.66–134 days) in 2014 (P=.05). The incidence of ESBL-KP infections remained constant over the study period (P=.14). Community-associated and healthcare-associated ESBL-EC infections trended upward (P=.006 and P=.02, respectively), while hospital-onset infections remained stable (P=.07). ESBL-EC infections were more common in females (54% vs 44%, P<.001) and Caucasians (50% vs 40%, P<.0001), and were more likely to be isolated from the urinary tract (61% vs 52%, P<.0001) than ESBL-KP infections.
CONCLUSIONS
The incidence of ESBL-EC infection has increased in community hospitals throughout the southeastern United States, while the incidence of ESBL-KP infection has remained stable. Community- and healthcare-associated ESBL-EC infections are driving the upward trend.
(See the commentary by Pfeiffer and Beldavs, on pages 984–986.)
Objective
Describe the epidemiology of carbapenem-resistant Enterobacteriaceae (CRE) and examine the effect of lower carbapenem breakpoints on CRE detection.
Design
Retrospective cohort.
Setting
Inpatient care at community hospitals.
Patients
All patients with CRE-positive cultures were included.
Methods
CRE isolated from 25 community hospitals were prospectively entered into a centralized database from January 2008 through December 2012. Microbiology laboratory practices were assessed using questionnaires.
Results
A total of 305 CRE isolates were detected at 16 hospitals (64%). Patients with CRE had symptomatic infection in 180 cases (59%) and asymptomatic colonization in the remainder (125 cases; 41%). Klebsiella pneumoniae (277 isolates; 91%) was the most prevalent species. The majority of cases were healthcare associated (288 cases; 94%). The rate of CRE detection increased more than fivefold from 2008 (0.26 cases per 100,000 patient-days) to 2012 (1.4 cases per 100,000 patient-days; incidence rate ratio (IRR), 5.3 [95% confidence interval (CI), 1.22–22.7]; P = .01). Only 5 hospitals (20%) had adopted the 2010 Clinical and Laboratory Standards Institute (CLSI) carbapenem breakpoints. The 5 hospitals that adopted the lower carbapenem breakpoints were more likely to detect CRE after implementation of breakpoints than before (4.1 vs 0.5 cases per 100,000 patient-days; P < .001; IRR, 8.1 [95% CI, 2.7–24.6]). Hospitals that implemented the lower carbapenem breakpoints were more likely to detect CRE than were hospitals that did not (3.3 vs 1.1 cases per 100,000 patient-days; P = .01).
Conclusions
The rate of CRE detection increased fivefold in community hospitals in the southeastern United States from 2008 to 2012. Despite this, our estimates are likely underestimates of the true rate of CRE detection, given the low adoption of the carbapenem breakpoints recommended in the 2010 CLSI guidelines.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.