We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Emerging wildlife pathogens often display geographic variability due to landscape heterogeneity. Modeling approaches capable of learning complex, non-linear spatial dynamics of diseases are needed to rigorously assess and mitigate the effects of pathogens on wildlife health and biodiversity. We propose a novel machine learning (ML)-guided approach that leverages prior physical knowledge of ecological systems, using partial differential equations. We present our approach, taking advantage of the universal function approximation property of neural networks for flexible representation of the underlying dynamics of the geographic spread and growth of wildlife diseases. We demonstrate the benefits of our approach by comparing its forecasting power with commonly used methods and highlighting the obtained insights on disease dynamics. Additionally, we show the theoretical guarantees for the approximation error of our model. We illustrate the implementation of our ML-guided approach using data from white-nose syndrome (WNS) outbreaks in bat populations across the US. WNS is an infectious fungal disease responsible for significant declines in bat populations. Our results on WNS are useful for disease surveillance and bat conservation efforts. Our methods can be broadly used to assess the effects of environmental and anthropogenic drivers impacting wildlife health and biodiversity.
Objectives/Goals: Mathematical models of airborne virus transmission lack supporting field and clinical data such as viral aerosol emission rates and airborne infectious doses. Here, we aim to measure inhalation exposure to influenza aerosols in a room shared with persons with community-acquired influenza and estimate the infectious dose via inhalation. Methods/Study Population: We recruited healthy volunteer recipients and influenza donors with polymerase chain reaction (PCR)-confirmed community-acquired infection. On admission to a hotel quarantine, recipients provided sera to determine baseline immunity to influenza virus, and donor infections were confirmed by quantitative real-time polymerase chain reaction. Donors and recipients were housed in separate rooms and interacted in an “event room” with controlled ventilation (0.2 – 0.5 air changes/hour) and relative humidity (20–40%). We collected ambient bioaerosol exposure samples using NIOSH BC-251 samplers. Donors provided exhaled breath samples collected by a Gesundheit-II (G-II). We analyzed aerosol samples using dPCR and fluorescent focus assays for influenza A and sera by hemagglutinin inhibition assay (HAI) against donor viruses and vaccine strains. Results/Anticipated Results: Among two cohorts (24b and 24c), we exposed 11 recipients (mean age: 36; 55% female) to 5 donors (mean age: 21; 80% female) infected with influenza A H1N1 or H3N2. Eight G-II and two NIOSH bioaerosol samples (1–4 µm and ≥4 µm) were PCR positive. We cultured virus from one G-II sample. Based on previous literature, we hypothesized that ~50% of immunologically naïve people (HAI Discussion/Significance of Impact: We demonstrated that it is feasible to recruit donors with community-acquired influenza and expose recipients to measurable virus quantities under controlled conditions. However, baseline immunity was high among volunteers. Our work sets the stage for designing studies with increased sample sizes comprising immunologically naïve volunteers.
The relationship between oocyte morphology and developmental potential has been a hot research topic in assisted reproductive technology (ART). Whether inclusions in the perivitelline space (PVS) affect ART outcomes remains controversial.
Case Presentation:
We present a case report of a 34-year-old G3P1A2 woman who sought ART treatment because of sequelae of pelvic disease. As her husband had severe oligospermia due to the stress on the day of oocyte retrieval, intracytoplasmic sperm injection (ICSI) was performed. After denudation, varying degrees of debris were found in the PVS, but all the oocytes were subjected to ICSI. Among the eleven retrieved oocytes, eight were fertilized. The morphology of the embryos was scored on Days 2 and 3. Five embryos were frozen on Day 3, and two best-quality embryos were subsequently transferred via frozen embryo transfer.
Conclusion:
Severe debris in the PVS seems to affect embryo quality but not fertilization. Mild debris in the PVS may have little effect on the outcome of ART treatment. In our patient, after two embryos that were derived from oocytes with relatively few debris in the PVS were transferred, a successful live birth occurred.
Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope.
Methods:
A retrospective analysis was performed on the clinical data of 2513 children aged 3–18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope.
Results:
(1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001).
Conclusion:
The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.
Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83–0.85) and 0.82 (95% CI, 0.78–0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.
Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.
This study aimed to investigate the optimal frozen embryo transfer (FET) strategy for recurrent implantation failure (RIF) patients with three consecutive failed cleaved embryo implantations and no blastocyst preservation. This retrospective analysis was divided into three groups based on the FET strategy: thawed day 3 embryo transfer (D3 FET group); and extended culture of frozen–thawed day 3 embryos to day 5 blastocysts transfer (D3–D5 FET group); thawed blastocyst transfer (D5 FET group). Transplant cycle data were compared between the three groups. In total, 43.8% of vitrified–thawed cleavage embryos developed into blastocysts. Analysis of the three transplantation strategies showed that, compared with the D3 FET group, D3–D5 had a significantly better hCG-positivity rate and live-birth rate (P < 0.05). Pregnancy outcomes in the D3–D5 FET group and D5 FET group were similar regarding hCG-positivity rate, implantation rate, clinical pregnancy rate, and live-birth rate. Our findings propose two potentially valuable transfer strategies for patients experiencing repeated implantation failures. The D3–D5 FET approach presents a greater potential for selecting promising embryos in cases without blastocyst preservation; however, this strategy does entail the risk of cycle cancellation. Conversely, in instances where blastocyst preservation is an option, prioritizing consideration of the D5 FET strategy is recommended.
Environment-induced epigenetics are involved in diapause regulation, but the molecular mechanism that epigenetically couples nutrient metabolism to diapause regulation remains unclear. In this study, we paid special attention to the significant differences in the level of N6-adenosine methylation (m6A) of dihydroxyacetone phosphate acyltransferase (DHAPAT) and phosphatidate phosphatase (PAP) genes in the lipid metabolism pathway of the bivoltine silkworm (Bombyx mori) strain Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, non-diapause egg producer). We knocked down DHAPAT in the pupal stage of the QFLT group, resulting in the non-diapause destined eggs becoming diapausing eggs. In the PAP knockdown group, the colour of the non-diapause destined eggs changed from light yellow to pink 3 days after oviposition, but they hatched as normal. Moreover, we validated that YTHDF3 binds to m6A-modified DHAPAT and PAP mRNAs to promote their stability and translation. These results suggest that RNA m6A methylation participates in the diapause regulation of silkworm by changing the expression levels of DHAPAT and PAP and reveal that m6A epigenetic modification can be combined with a lipid metabolism signal pathway to participate in the regulation of insect diapause traits, which provides a clearer image for exploring the physiological basis of insect diapause.
During the operation of automatic navigation rice transplanter, the accuracy of path tracking is influenced by whether the transplanter can enter the stable state of linear path tracking quickly, thus affecting the operation quality and efficiency. To reduce the time to enter the path tracking stable state and improve the tracking accuracy and stability for the rice transplanter, path tracking control method based on variable universe fuzzy control (VUFC) and improved beetle antenna search (BAS) is proposed in this paper. VUFC is applied to achieve adaptive adjustment of the fuzzy universe by dynamically adjusting the quantization and scaling factors according to the variations of errors by the contraction–expansion factor. To solve the problem of setting the contraction–expansion factor in VUFC and real-time performance, an offline parameter optimization method is presented to calculate the optimal contraction–expansion factor by an iterative optimization algorithm in a path tracking simulation model, where the iterative optimization algorithm is the BAS algorithm improved by the isolated niching technique and adaptive step size strategy in this paper. To verify the effectiveness of the proposed path tracking control method, simulation and field linear path tracking experiments were carried out. Experimental results indicate that the proposed method reduces the time of entering the stable state of linear path tracking and improves the accuracy and stability of path tracking compared with the pure pursuit control method.
As intense, ultrashort, kHz-repetition-rate laser systems become commercially available, pulse cumulative effects are critical for laser filament-based applications. In this work, the pulse repetition-rate effect on femtosecond laser filamentation in air was investigated both numerically and experimentally. The pulse repetition-rate effect has negligible influence at the leading edge of the filament. Clear intensity enhancement from a high-repetition pulse is observed at the peak and tailing edge of the laser filament. As the repetition rate of the laser pulses increases from 100 to 1000 Hz, the length of the filament extends and the intensity inside the filament increases. A physical picture based on the pulse repetition-rate dependent ‘low-density hole’ effect on filamentation is proposed to explain the obtained results well.
The relationship of a diet low in fibre with mortality has not been evaluated. This study aims to assess the burden of non-communicable chronic diseases (NCD) attributable to a diet low in fibre globally from 1990 to 2019.
Design:
All data were from the Global Burden of Disease (GBD) Study 2019, in which the mortality, disability-adjusted life-years (DALY) and years lived with disability (YLD) were estimated with Bayesian geospatial regression using data at global, regional and country level acquired from an extensively systematic review.
Setting:
All data sourced from the GBD Study 2019.
Participants:
All age groups for both sexes.
Results:
The age-standardised mortality rates (ASMR) declined in most GBD regions; however, in Southern sub-Saharan Africa, the ASMR increased from 4·07 (95 % uncertainty interval (UI) (2·08, 6·34)) to 4·60 (95 % UI (2·59, 6·90)), and in Central sub-Saharan Africa, the ASMR increased from 7·46 (95 % UI (3·64, 11·90)) to 9·34 (95 % UI (4·69, 15·25)). Uptrends were observed in the age-standardised YLD rates attributable to a diet low in fibre in a number of GBD regions. The burden caused by diabetes mellitus increased in Central Asia, Southern sub-Saharan Africa and Eastern Europe.
Conclusions:
The burdens of disease attributable to a diet low in fibre in Southern sub-Saharan Africa and Central sub-Saharan Africa and the age-standardised YLD rates in a number of GBD regions increased from 1990 to 2019. Therefore, greater efforts are needed to reduce the disease burden caused by a diet low in fibre.
Synaptotagmin 1 (Syt1) is an abundant and important presynaptic vesicle protein that binds Ca2+ for the regulation of synaptic vesicle exocytosis. Our previous study reported its localization and function on spindle assembly in mouse oocyte meiotic maturation. The present study was designed to investigate the function of Syt1 during mouse oocyte activation and subsequent cortical granule exocytosis (CGE) using confocal microscopy, morpholinol-based knockdown and time-lapse live cell imaging. By employing live cell imaging, we first studied the dynamic process of CGE and calculated the time interval between [Ca2+]i rise and CGE after oocyte activation. We further showed that Syt1 was co-localized to cortical granules (CGs) at the oocyte cortex. After oocyte activation with SrCl2, the Syt1 distribution pattern was altered significantly, similar to the changes seen for the CGs. Knockdown of Syt1 inhibited [Ca2+]i oscillations, disrupted the F-actin distribution pattern and delayed the time of cortical reaction. In summary, as a synaptic vesicle protein and calcium sensor for exocytosis, Syt1 acts as an essential regulator in mouse oocyte activation events including the generation of Ca2+ signals and CGE.
Direct determination of barrier height (ΦBH) value between Ir and single crystal (001) hydrogen-terminated diamond with lightly boron doped has been performed using x-ray photoelectron spectroscopy technique. 70 nm Ir islands were formed on hydrogen-terminated diamond surface using anodic aluminum oxide. The ΦBH value for Ir/hydrogen-terminated diamond was −0.43 ± 0.14 eV, indicating that Ir was a suitable metal for ohmic contact with hydrogen-terminated diamond. The band diagram of Ir/hydrogen-terminated diamond was obtained. The experimental ΦBH was compared with the theoretical ΦBH in this work.
Identifying the relative importance of urban and non-urban land-use types for potential denitrification derived N2O at a regional scale is critical for quantifying the impacts of human activities on nitrous oxide (N2O) emission under changing environments. In this study we used a regional dataset from China including 197 soil samples and six land-use types to evaluate the main predictors (land use, heavy metals, soil pH, soil moisture, substrate availability, functional and broad microbial abundances) of potential denitrification using multivariate and pathway analysis. Our results provide empirical evidence that soils on farms have the greatest potential denitrifying ability (PDA) (10.92±6.08ng N2O-N·g–1 dry soil·min–1) followed by urban soil (6.80±5.35ng N2O-N·g–1 dry soil·min–1). Our models indicate that land use (low vs. high human activity), followed by total nitrogen (TN) and heavy metals (Cu, Zn, Pb, Cd) was the most important driver of PDA. In addition, our path analysis suggests that at least part of the impacts of land use on potential denitrification were mediated via microbial abundance, soil pH and substrates including TN, dissolved organic carbon and nitrate. This study identifies the main predictors of denitrification at a regional scale which is needed to quantify the impact of human activities on ecosystem functionality under changing conditions.
The Chinese Solar and Geophysical Data (CSGD) was first issued at the Beijing Astronomical Observatory, Chinese Academy of Sciences (now the headquarter of the National Astronomical Observatories, Chinese Academy of Sciences) in 1971, when China’s satellite-industry was booming. CSGD covers the observational data (observations of the sunspots, solar flares, solar radio bursts, ionospheric storm and geomagnetic storm) from a couple of domestic observatories and the forecast data. The compiler of CSGD still keeps the data exchange with other institutes worldwide. The type of the dataset includes texts, tables, figures and so on. Up to now, we have electronized all the historic archives, making them easily accessible to people who are interested in them.
We examine the association between leisure-time activities and the risk of developing cognitive impairment among Chinese older people, and further investigate whether the association varies by educational level.
Methods:
This follow-up study included 6,586 participants (aged 79.5 ± 9.8 years, range 65–105 years, 51.7% female) of the Chinese Longitudinal Healthy Longevity Survey who were aged ≥65 years and were free of cognitive impairment in 2002. Incident cognitive impairment was defined at the 2005 or 2008/2009 survey following an education-based cut-off on the adapted Chinese version of Mini-Mental State Examination (MMSE). Participation in cognitive activities (e.g. reading) and non-exercise physical activity (e.g. housework) was assessed by a self-reported scale. Cox proportional hazard models were employed to examine the association of leisure activities with incident cognitive impairment while controlling for age, gender, education, occupation, residence, physical exercise, smoking, drinking, cardiovascular diseases and risk factors, negative well-being, and physical functioning, and baseline MMSE score.
Results:
During a five-year follow-up, 1,448 participants developed incident cognitive impairment. Overall, a high level of participation in leisure activities was associated with a 41% decreased risk of cognitive impairment compared to low-level engagement in leisure activities after controlling for age, gender, education, and other confounders. Moreover, there was a significant interaction between leisure activity and educational level, such that the beneficial effect of leisure activities on cognitive function was larger in educated elderly than their uneducated counterparts, and only educated elderly benefited from cognitive activities.
Conclusions:
Late-life leisure activities protect against cognitive impairment among elderly Chinese people, and the protective effects are more profound for educated elderly.
Breastfeeding has been an important survival trait during human history, though it has long been recognized that individuals differ in their exact breastfeeding behavior. Here our aims were, first, to explore to what extent genetic and environmental influences contributed to the individual differences in breastfeeding behavior; second, to detect possible genetic variants related to breastfeeding; and lastly, to test if the genetic variants associated with breastfeeding have been previously found to be related with breast size. Data were collected from a large community-based cohort of Australian twins, with 3,364 women participating in the twin modelling analyses and 1,521 of them included in the genome-wide association study (GWAS). Monozygotic (MZ) twin correlations (rMZ = 0.52, 95% CI 0.46–0.57) were larger than dizygotic (DZ) twin correlations (rDZ = 0.35, 95% CI 0.25–0.43) and the best-fitting model was the one composed by additive genetics and unique environmental factors, explaining 53% and 47% of the variance in breastfeeding behavior, respectively. No breastfeeding-related genetic variants reached genome-wide significance. The polygenic risk score analyses showed no significant results, suggesting breast size does not influence breastfeeding. This study confers a replication of a previous one exploring the sources of variance of breastfeeding and, to our knowledge, is the first one to conduct a GWAS on breastfeeding and look at the overlap with variants for breast size.
Previous studies have reported that the first polar body (PB1) morphology reflects embryo development competence, but the effects of PB1 on porcine embryo development remain unknown. This study aims to determine whether the ability of porcine embryo development is related to oocytes’ PB1 in vitro. The distribution of type II cortical granules (CGs) of porcine matured oocytes in grade B PB1 is significantly greater compared with those in grades A and C PB1 (71.43% versus 52.46% and 50%; P < 0.05). The ratio of porcine parthenogenetic blastocysts and the mean cell number in each blastocyst in the group with grade B PB1 is significantly greater than that with grades A and C PB1 (30.81% vs. 19.02% and 15.15%; P < 0.05) and (36.67 versus 24.67, 28.67; P < 0.05), and no significant differences are found in the embryo cleavage for all groups (79.75%, 84.30%, and 78.18% in grades A, B, and C PB1; P > 0.05). The acetylation level of porcine embryos in the group with grade B PB1 is significantly greater compared with those in the other groups (P < 0.05), and is almost 2.5 times higher than that in grade A. Therefore, porcine oocytes with PB1 in grade B are more competitive in cytoplasmic maturation and further embryo development in vitro.
High strength aluminum (Al) alloys were prepared by rapid solidification method in the Al–Ni–La system. Microstructural characterizations show that all the investigated Al–Ni–La alloys are comprised of Al, rod-like Al3Ni, and blocky Al11La3 phases, of which the size and volume fraction are composition-dependent. The Al85.5Ni9.5La5 (at.%) alloy shows the finest microstructure, which contributes to the highest strength along with considerable plasticity. The experimental analysis and finite element simulation (FES) show that the distribution of the intermetallic phases greatly affects the mechanical properties of the alloys. The rod-like Al3Ni phase precipitated with the locally uniform direction prevents the propagation of cracks and benefits the plastic deformation, whereas the blocky Al11La3 phase exhibits the nature of brittleness and acts as the origin of the microcrack initiation. These findings suggest a new method to design high strength Al alloys.
The study evaluated whether feeding diosmectite–ZnO composite (DS-ZnO) at 500 mg Zn/kg to early weaned pigs would alleviate the weaning-related intestinal disorders as a substitute for high concentration of ZnO (2250 mg Zn/kg). The pigs weaned at an age of 21 ± 1 d were allotted to four treatments groups as follows: (1) control; (2) DS-ZnO, 500 mg Zn/kg diet; (3) ZnO, 2250 mg Zn/kg diet; and (4) mixture of 2·0 g DS/kg and 500 mg Zn/kg from ZnO (equal amount of DS and ZnO in the DS-ZnO treatment group). The results showed that, compared with the control on days 7 and 14 post-weaning, addition of DS-ZnO at 500 mg Zn/kg improved (P< 0·05) daily gain and feed intake, decreased (P< 0·05) post-weaning scour scores, increased (P< 0·05) jejunal villus height and the ratio of villus height and crypt depth, decreased (P< 0·05) jejunal paracellular permeability of fluorescein isothiocyanate dextran 4 kDa and up-regulated (P< 0·05) tight junction protein expression of occludin, claudin-1 and zonula occludens-1 in jejunal mucosa. The mRNA levels of TNF-α, IL-6 and interferon-γ (IFN-γ) on day 7 post-weaning were also decreased (P< 0·05). The piglets fed DS-ZnO at 500 mg Zn/kg did not differ in the above parameters from those fed ZnO at 2250 mg Zn/kg, while they had better performance than those fed the mixture of DS and ZnO. Supplementation with DS-ZnO at 500 mg Zn/kg was effective in alleviating diarrhoea, barrier dysfunction and inflammatory cytokine expression and up-regulating tight junction protein expression.