We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mild cognitive impairment (MCI) types may have distinct neuropathological substrates with hippocampal atrophy particularly common in amnestic MCI (aMCI). However, depending on the MCI classification criteria applied to the sample (e.g., number of abnormal test scores considered or thresholds for impairment), volumetric findings between MCI types may change. Additionally, despite increased clinical use, no prior research has examined volumetric differences in MCI types using the automated volumetric software, Neuroreader™.
Methods:
The present study separately applied the Petersen/Winblad and Jak/Bondi MCI criteria to a clinical sample of older adults (N = 82) who underwent neuropsychological testing and brain MRI. Volumetric data were analyzed using Neuroreader™ and hippocampal volumes were compared between aMCI and non-amnestic MCI (naMCI).
Results:
T-tests revealed that regardless of MCI classification criteria, hippocampal volume z-scores were significantly lower in aMCI compared to naMCI (p’s < .05), and hippocampal volume z-scores significantly differed from 0 (Neuroreader™ normative mean) in the aMCI group only (p’s < .05). Additionally, significant, positive correlations were found between measures of delayed recall and hippocampal z-scores in aMCI using either MCI classification criteria (p’s < .05).
Conclusions:
We provide evidence of correlated neuroanatomical changes associated with memory performance for two commonly used neuropsychological MCI classification criteria. Future research should investigate the clinical utility of hippocampal volumes analyzed via Neuroreader™ in MCI.
This study examined the relationship between patient performance on multiple memory measures and regional brain volumes using an FDA-cleared quantitative volumetric analysis program – Neuroreader™.
Method:
Ninety-two patients diagnosed with mild cognitive impairment (MCI) by a clinical neuropsychologist completed cognitive evaluations and underwent MR Neuroreader™ within 1 year of testing. Select brain regions were correlated with three widely used memory tests. Regression analyses were conducted to determine if using more than one memory measures would better predict hippocampal z-scores and to explore the added value of recognition memory to prediction models.
Results:
Memory performances were most strongly correlated with hippocampal volumes than other brain regions. After controlling for encoding/Immediate Recall standard scores, statistically significant correlations emerged between Delayed Recall and hippocampal volumes (rs ranging from .348 to .490). Regression analysis revealed that evaluating memory performance across multiple memory measures is a better predictor of hippocampal volume than individual memory performances. Recognition memory did not add further predictive utility to regression analyses.
Conclusions:
This study provides support for use of MR Neuroreader™ hippocampal volumes as a clinically informative biomarker associated with memory performance, which is a critical diagnostic feature of MCI phenotype.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.