We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years.
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
In this volume Smith examines the early modern science of generation, which included the study of animal conception, heredity, and fetal development. Analyzing how it influenced the contemporary treatment of traditional philosophical questions, it also demonstrates how philosophical pre-suppositions about mechanism, substance, and cause informed the interpretations offered by those conducting empirical research on animal reproduction. Composed of essays written by an international team of leading scholars, the book offers a fresh perspective on some of the basic problems in early modern philosophy. It also considers how these basic problems manifested themselves within an area of scientific inquiry that had not previously received much consideration by historians of philosophy.
(How could [what is] come to be? For if it came into being, it is not: nor is it if it is ever going to be in the future. Thus coming to be is extinguished and perishing unheard of.)
Parmenides, from Simplicius, In Phys. 78, 5; 145, 5, 19–21.
(Substance in the truest and strictest, the primary sense of that term, is that which is neither asserted of nor can be found in a subject. We take as examples of this a particular man or a horse.)
Aristotle, Categories 2a 11–14.
At first glance, the unifying theme of the essays collected here may easily appear to the historian of philosophy to reside in one of the narrower alleyways of this history and certainly not along one of its grand avenues. By the nineteenth century, to be sure, embryology had come into its own as an area of scientific investigation, one whose questions were to be answered by experiment and whose answers were not seen as granting insight into any deep and timeless philosophical mysteries.
The perception could not have been more different in classical Greek thought.
It may seem improper to propose to speak of theories of heredity in seventeenth-century science. The transmission of traits through material units did not become a central topic of concern until the eighteenth century, in, for example, the work of Charles Bonnet and others impressed with Abraham Trembley's discovery in 1741 of the freshwater polyp's ability to regenerate itself from amputated bits – evidence that each bit of an organism carried in it some sort of plan for the organism as a whole. Indeed, in the early seventeenth century the idea of a program or a blueprint that specifies what a developing creature must become is precisely what the prevailing anti-Aristotelian spirit compelled researchers to reject in their accounts of animal development.
“Heredity,” in the narrower sense that this term has today, refers only to those theories of the acquisition of traits by creatures that account for the mechanism by which information-bearing material causes a new creature to acquire the traits it does. But by “heredity” in a broader sense we may also understand any number of different kinds of transmission in sexual reproduction, all of which were clearly on the minds of early modern generation scientists. Generation theorists in the seventeenth century were, namely, intensely interested in determining the following:
How it is that parents generate offspring with traits similar to their own. Any creature is more than just a perfect blend of equal parts of father and mother. It also bears resemblance to more distant relatives and frequently appears to have traits altogether dissimilar to those of any known ancestors. All copy is to some extent bad copy. Without knowledge of the mechanism of dominant and recessive genes, this fact presented a number of problems.