We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this work, we present experimental results on the behavior of liquid water at megabar pressure. The experiment was performed using the HIPER (High-Intensity Plasma Experimental Research) laser facility, a uniaxial irradiation chamber of GEKKO XII (GXII) at the Institute of Laser Engineering (ILE), and the PHELIX at GSI (GSI Helmholtz Centre for Heavy Ion Research), a single-beam high-power laser facility, to launch a planar shock into solid multilayered water samples. Equation-of-state data of water (H2O are obtained in the pressure range 0.50–4.6 Mbar by tuning the laser-drive parameters. The Hugoniot parameters (pressure, density, etc.) and the shock temperature were simultaneously determined by using VISAR and SOP as diagnostic tools and quartz as the standard material for impedance mismatch experiments. Finally, our experimental results are compared with hydrodynamic simulations tested with different equations of state, showing good compatibility with tabulated SESAME tables for water.
There are no effective programs on return-to-work (RTW) despite an increase of stress related disorders. We developed an original rehabilitation program,’Ultra-short daily briefings care (USDBC)’. USDBC is based on a key concept of European Framework for Psychosocial Risk Management (PRIMA-EF; WHO, 2008) that provides the good practice guidelines at the workplace. We carried out USDBC at the worksite of Panasonic Healthcare Co., Ltd. to determine whether USDBC facilitates RTW.
Objectives:
To develop and establish the appropriate intervention that reduces depressive severity of sick-listed employees.
Aims:
The aim of the study was to determine whether USDBC strengthen the sense of coherence (SOC; Antonovsky, 1985).
Method:
We compared two groups in a cross-sectional study design: 16 depressed RTW employees (USDBC group) vs. 121 healthy employees (control group) (Fig.1). USDBC group was received the instant face-to-face rehabilitation program in every workday (Fig.2). The primary outcome was the ability to cope with stress, measured by self-reported 13-items SOC scale for Japanese (Yamazaki, 1999).
Results:
In the USDBC group, significant changes were observed between baseline and measurement point in SOC score (40.3 vs. 54.4; 95% CI (20.6 to (7.5), whereas in the control group, no significant changes were observed (58.3 vs. 57.9; 95% CI (0.1 to 0.9) (Table.1).
Conclusions:
The study suggests that USDBC strengthen the depressed employees’ SOC.
Fig. 1
Participant now climt
Flow diagram showing the selection of USDBC group and control group
Fig. 2
Intervention with USDBC
Depressive employees behave according to this flow in every workday.
Table 1
Subjects’ characteristics and SOC.
Gender
MedianAde(Range)
MeanSOC
93% CI
P-value
Male
Female
Baseline (SD)
Measurtnentpoint (SD)
USDBC group (n=l6)
12
4
39 (32 - 53)
40.3(12 4)
54.4 (8.8)
-20.6 to-7.5
< 0.001
Control group (n=121)
94
27
41 (21 - 59)
58 3(9.4)
57.9(10 1)
-0 1 to 0.9
0.10
In the USDBC goroup, significant change was found between baselne and tneasurment point. In the control group, no significant change was found.
The general formula of the amphiboles of this series may be written as NaxMg2(Mg(5-y)Aly,)(Si(8-z)Alz)O22(OH)2, where Mg = Mg + Fe2+ + Mn2+ and Al = Al + Fe3+ + Ti. The individual <T–O> distances are linear functions of their [4]Al content, and the [4]Al content is strongly ordered in the following way: T1B > T1A » T2B » T2A. The <M1-O>, <M2-O> and <M3–O> distances are linear functions of the mean ionic radius of their constituent cations. End-member compositions may be written as follows: A☐Mg2Mg5Si8O22(OH)2O22(OH)2; A☐Mg2(Mg3Al2)(Si6Al2)O22(OH)2; ANaMg2Mg5(Si7Al) These compositions define a plane in xyz space across which the data of Schindler et al. (2008), measured on amphiboles from amphibolites, follow a tightly constrained trajectory. Anthophyllite–gedrite amphiboles equilibrated under significantly different P-T conditions (e.g. igneous rocks, contact-metamorphic rocks) follow trends that diverge from this trajectory, with greater Na and [4]Al contents and relatively smaller [6]Al contents. Detailed examination of the local bond topology involving the A and M2 sites indicates that the maximum degree of bond-valence compensation will occur for incorporation of ANa and M2Al in the ratio 4:10, and hence 2.5 ANa = M2Al in these amphiboles. This relation closely fits the data of Schindler et al. (2008), suggesting that the variation in chemical composition in anthophyllite–gedrite amphiboles is strongly constrained by the anion bond-valence requirements of the Pnma amphibole structure. We further suggest that different compositional trends for ortho-amphiboles equilibrated under different P-T conditions are the result of the valence-sum rule operating with (different) bond-lengths characteristic of these P-T conditions.
The crystal structures of twenty-five orthorhombic Fe-Mg-Mn amphiboles, a = 18.525 – 18.620, b = 17.806-18.034, c = 5.264-5.303 Å, V = 1737.6-1776.7, space group = Pnma, Z = 4, have been refined to R indices in the range 2.1–7.8% using 790–1804 unique observed reflections measured with Mo-Kα X-radiation on a Bruker P4 automated four-circle diffractometer equipped with a 1K CCD detector. The quality of the refinements is strongly a function of the [4]Al content of the crystals because of unmixing in the central part of the series due to the presence of a low-temperature solvus. The amphibole crystals were analysed by electron microprobe subsequent to collection of the X-ray intensity data and span the anthophyllite-gedrite series from 0.17–1.82 [4]Al a.p.f.u. Mössbauer spectroscopy shows that the amphiboles of this series commonly contain small but significant amounts of Fe3+ . The amount of [4]Al is linearly related to the grand <T-O> distance by the equation <T-O> = 1.6214 + 0.171 [4]Al, R = 0.980; the slope of this relation is not significantly different from that characteristic of a hard-sphere model. The <T-O> distances indicate the following site preference for [4]Al: T1B > T2B > T1A » T2A. The <M2-O> distances are compatible with all [6]Al and Fe3+ ordered at the M2 site. The grand <M1,2,3 '3 –O> distance is related to the mean radius of the constituent cations, <rM1,2,3>, by the equation ≪M1,2,3-O≫ = 1.4684 + 0.8553(7) <rM1,2,3>.
Yellow nutsedge infests a large number of hectares in the Treasure Valley of eastern Oregon and western Idaho. Much of its continued expansion appears to be related to onion production in the valley. Fall applications of metham often produce inconsistent results when used to control yellow nutsedge before planting an onion crop. Trials were conducted in the laboratory to determine the influence on yellow nutsedge control of metham dose, duration of exposure, temperature during exposure, and tuber conditioning by washing and chilling at 3 C. All factors influenced metham efficacy against yellow nutsedge tubers. The dose causing 50% reduction in sprouting tubers (I50) for metham ranged from 22 to 76 mg kg−1 of soil and was lower for conditioned tubers than nonconditioned tubers across all conditions, except when tubers were exposed at 25 C for 3 d. Nonconditioned tubers were unaffected by metham after 1 d exposure at 5 C. Increasing exposure temperature or increasing exposure duration decreased sprouting for nonconditioned tubers. As exposure duration and exposure temperature increased, differences among conditioned and nonconditioned tubers were less. Temperature and exposure duration affects metham efficacy against yellow nutsedge, and the condition of the tubers at the time of treatment also has a significant effect. Applications of metham at a time when yellow nutsedge tubers are not dormant may improve yellow nutsedge control.
Blowing snow was produced artificially in a cold wind-tunnel, and various measurements were conducted including particle diameters, concentrations, saltation lengths heat transport and electric charge. The mean diameter of blowing snow particles decreased only slightly with increasing height; in the saltation layer, standard deviation was large and velocities were scattered in a wide range, suggesting the complex dynamic process on taking-off. The mean saltation length ranged from a few cm to 40 cm increasing with wind velocity.
When wind blew without snow drifting, the static air pressure on the snow surface was smaller at higher levels, the vertical pressure gradient being negative. The pressure gradient became positive when blowing snow was initiated eg +9.6 Pa/m at 11.2 m/s and -8.3 °C. The magnitude of à downward force acting on a saltating snow partice caused by the pressure gradient was not large enough to explain the downward acceleration found from photographic analyses of particle trajectories.
Blowing snow particles were charged negatively the magnitude of charge increased with lowering temperature. Increase in vertical heat transfer was found in blowing snow by measuring the temperature of the air at various levels; the increase is reflected on that in the apparent turbulent diffusion coefficient.
Gamma Cassiopeiae is an enigmatic Be star with unusually hard, strong X-ray emission compared with normal main-sequence B stars. The origin has been debated for decades between two theories: mass accretion onto a hidden compact companion and a magnetic dynamo driven by the star-Be disk differential rotation. There has been no decisive signature found that supports either theory, such as a pulse in X-ray emission or the presence of large-scale magnetic field. In a ~100 ksec duration observation of the star with the Suzaku X-ray observatory in 2011, we detected six rapid X-ray spectral hardening events called “softness dips”. All the softness dip events show symmetric softness ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either ~40% or ~70% partial covering absorption to kT ~12 keV plasma emission by matter with a neutral hydrogen column density of ~2 − 8 × 1021cm−2, while the spectrum outside of these dips is almost free of absorption. This result suggests that two distinct X-ray emitting spots in the γ Cas system, perhaps on a white dwarf companion with dipole mass accretion, are occulted by blobs in the Be stellar wind, the Be disk, or rotating around the white dwarf companion. The formation of a Be star and white dwarf binary system requires mass transfer between two stars; γ Cas may have experienced such activity in the past.
In the previous work, it is reported that the Spin-Seebeck effect (SSE), which refer to the generation of a spin current from a temperature gradient, can be enhanced by Fe interface treatment. Here, we investigated the Fe thickness (dFe) dependency of spin-Seebeck voltage (VSSE) and mixing conductance (gr) in Pt/Fe/Bi:YIG/SGGG system. As a result, magnitude of VSSE had a peak at dFe ≓ 1 ML (monolayer , ≓ 0.3 mm), and also increase of gr was saturated at this point. It suggests that VSSE increase with increasing gr when dFe is smaller than 1.0 ML. For the case in which dFe is larger than 1.0ML, however, VSSE decreases due to a spin current decay in Fe layer with a constant gr. These experimental results are consistent with previous theoretical works.
A large outbreak of enterohaemorrhagic Escherichia coli (EHEC) O111 and O157 occurred in Japan in April 2011. We conducted an unmatched case-control study and trace-back investigation to determine the source of EHEC O111 infection and risk factors for severe complications. Pulsed-field gel electrophoresis was performed to help define cases. A total of 86 individuals met the case definition. Of these, 40% experienced haemolytic uraemic syndrome (HUS), 24% acute encephalopathy, and 6% died. Illness was significantly associated with eating the raw beef dish yukhoe (odds ratio 19·64, 95% confidence interval 7·03–54·83), the likely food vehicle. EHEC O111 and its closely related stx-negative variants were found in the beef. HUS occurred most frequently in individuals aged 5–9 years, and this age group was significantly associated with acute encephalopathy. The prevalence of HUS and acute encephalopathy was higher than in previous non-O157-related outbreaks, indicating a high risk of severe complications.
To describe a case of giant cell reparative granuloma of the temporal bone which extended into the middle-ear cavity, and which was successfully treated surgically via a transmastoid approach, with hearing preservation.
Case:
A 37-year-old man presented with a one-year history of right-sided hearing loss, complicated by a three-month history of otalgia and a sensation of aural fullness. Computed tomography and magnetic resonance imaging demonstrated an osteolytic tumour lesion in the right temporal bone. The diagnosis was confirmed by biopsy from the mastoid lesion.
Investigation and intervention:
Pure-tone audiometry, computed tomography and magnetic resonance imaging were conducted, followed by total resection.
Result:
The giant cell reparative granuloma of the temporal bone was completely resected, with preservation of hearing.
Conclusion:
Although this patient's giant cell reparative granuloma of the temporal bone extended into the middle-ear cavity, total resection was achieved, with preservation of hearing. To the best of our knowledge, hearing preservation following resection of giant cell reparative granuloma of the temporal bone has not previously been reported.
We report an extremely rare case of congenital cholesteatoma of the mastoid region, presenting as acute mastoiditis. We also review the 16 previously reported cases of congenital cholesteatoma of the mastoid region.
Case report:
A 65-year-old man presented with left-sided, post-auricular swelling and pain. Acute mastoiditis was diagnosed, with computed tomography demonstrating destruction of the bony plates of the posterior cranial fossa and sigmoid sinus. Initial surgery revealed a cholesteatoma in the mastoid, with no extension into the aditus ad antrum or attic. These findings were confirmed by pathological and immunohistochemical analysis of the surgical specimen, the latter using involucrin. The cholesteatoma matrix was completely removed in a second operation.
Conclusions:
Including this case, only four of the 17 reported cases of congenital cholesteatoma of the mastoid region showed post-auricular pain or swelling, indicating acute mastoiditis. Clinicians should bear in mind that congenital cholesteatoma may be present in patients presenting with mastoiditis, particularly adults.
There are few data on circulatory pro-inflammatory cytokine levels and cytokine gene polymorphisms in H. pylori-positive patients. A cross-sectional study was conducted to examine the effects of H. pylori infection, gastric atrophy, and the IL-8 T-251A polymorphism on plasma IL-8 levels in 98 Japanese adults. Seventy-one subjects were positive for H. pylori infection. The geometric mean of plasma IL-8 concentration was significantly higher in subjects with H. pylori infection than in those without (P=0·001). The development of atrophy was negatively associated with IL-8 levels in the H. pylori-positive subjects, although not significantly. Plasma IL-8 levels in the T/T genotype were associated with H. pylori infection and atrophy status (P=0·016). Our findings suggested that circulating IL-8 levels were associated with H. pylori infection. The effect of H. pylori infection on plasma IL-8 levels was not clearly modified by the IL-8 T-251A polymorphism.
The phase equilibria and phase transformation of the body-centered cubic (bcc) phase in the Cu–Ti–Al system were investigated by the diffusion couple method, metallographic examination, differential scanning calorimetry, and x-ray diffraction. The isothermal sections at 700 and 900 °C and vertical sections at 18 at.% Al, 22 at.% Al, and 25 at.% Al in the Cu-rich portion were determined. These results indicate that (i) the Cu2TiAl compound with the L21 Heusler structure has a larger solubility range; (ii) the stable B2 + L21 miscibility gap of the ordered bcc phase exists until the liquid phase, and the tie lines of this miscibility gap are almost parallel with the Cu–Ti side; (iii) the composition and temperature for the eutectic reaction (L ↔ B2 + L21) are about 7 at.% Ti and about 970 °C, respectively, and (iv) the velocity of the eutectoid decomposition [bcc ↔ face-centered cubic (fcc) + D83] of the bcc phase with martensitic morphology in the Cu–Ti–Al alloys is slower than that of the Cu–Al alloys.
On the basis of the CALPHAD (Calculation of Phase Diagrams) method, the compositional range of stable miscibility gap and volume fractions of the two liquid phases in the Cu–Fe–Cr–Ni system were predicted, which can provide the guidance for design of self-formed composite materials. Based on such information, the self-formed pencil-like bulk composite materials consisting of copper alloy and two kinds of stainless steels were prepared by controlling the compositions of Cu-rich and Fe-rich phases in immiscible liquid system by the conventional casting process. The experimental results are in good agreement with the ones predicted by calculation. This study indicates that it is possible to develop the pencil-like bulk composite materials consisting of copper alloy and stainless steels by the conventional casting process.
Surface lattice displacements of titanium dioxide (TiO2: rutile) during ultra-violet (UV) light irradiation have been investigated using a total reflection x-ray diffraction, which provides a high signal to noise ratio (S/N) and superior in-plane surface diffraction. Under the environments in vapors of H2O, CH3OH, C2H5OH and C3H6OH, the photo-catalytic activities of TiO2 (110), (100) and (001) surfaces subject to UV irradiation have been measured. It is found that the diffraction peaks and their full width half maxima (FWHMs) show some peculiarities with respect to the photo-catalytic activities in both surface lattices and adsorbed molecules in vapors. Furthermore, Kelvin force microscopy (KFM) has showed that there exists a very high surface potential, probably due to surface atom displacements induced by UV irradiation. With regard to the origin of the photo-catalytic activities, the induced surface potentials are discussed.
Structures and electrical properties of newly synthesized vinylidene fluoride (VDF) oligomer [CF3(CH2CF2)17I] films evaporated onto various substrates around liquid nitrogen temperature were investigated. As a result, the VDF oligomer films were mainly formed with ferroelectric phase (form I) crystals and the molecular chains were oriented parallel to the substrate surfaces regardless of both the kind of the substrates and the thickness of the VDF oligomer films. In addition to these properties, the VDF oligomer films showed polarization reversal due to 180° rotation of the polar VDF oligomer molecules according to the applied voltages. This ferroelectric behavior was verified by local poling and piezoresponse measurements with an atomic force microscope, and by measurements of D-E hysteresis curves.
Optical properties of fully-strained wurtzite and zincblende InxGa1-xN/GaN multiple quantum well (MQW) structures were compared to discuss the origin of exciton localization. In contrast to the hexagonal InGaN MQWs, the photoluminescence (PL) peak energy of cubic InGaN MQWs showed a moderate blueshift with decreasing well thickness, L, and low-temperature PL decay time of the cubic MQWs did not depend strongly on L. The results imply that the wavefunction overlap in cubic InGaN MQWs was not reduced compared to the hexagonal ones, since they do not suffer from the electric field normal to the QW plane due either to spontaneous or piezoelectric polarization. Both MQWs exhibited a large and composition-dependent bandgap bowing, and time-resolved PL (TR-PL) signals showed a stretched-exponential decay even at room temperature. The exciton localization is considered to be an intrinsic property of InGaN.
The arsenic dose dependence of electrical properties for implanted samples at 500°C and subsequently annealed at 1600°C for 30min has been investigated to derivate the activation energies of the arsenic donors in silicon carbide. Hall effect measurements were performed between 20K and 773K. Hall carrier concentration of implanted sample with high dose of 7×1015 cm−2 is independence of temperature, which indicates the formation of implanted layer with metallic conduction. For the sample with low dose of 1×1014 cm−2, the experimental Hall mobility varies directly as T3/2 below 80K and as T−3/2 above 150K. The activation energies of arsenic donors determined from the implanted sample with low dose using a least-squares fit of the charge neutrality equation are 66.8 meV for hexagonal site and 127.0 meV for cubic site, respectively.
The structural and electric properties of newly synthesized vinylidene fluoride (VDF) oligomer thin films evaporated on various substrate were investigated. The structural behavior of the VDF oligomer thin films strongly depended on the kinds of substrate and substrate temperature during film preparation. In particular, the VDF oligomers epitaxially grew on KBr(001), aligned their molecular chain along the <110> direction of substrate surface, and were similar to polar Form Itype crystals of poly(VDF). While, the thin films evaporated on NaCl(001), SiO2/Si were non-polar Form II-type or mixture of both Form I- and Form II-type crystals with their molecular chain normal to the surface. These facts indicated that crystal field of substrate, based on van der Waals and electrostatic interactions, strongly influenced to ferroelectric phase transition of the VDF oligomer. In addition, we demonstrate the formation of the local polarized domains in the epitaxial crystals by applying electric pulses from a conducting AFM probe used as a positionable topelectrode, and confirm their piezoelectricity of the VDF oligomers for the first time.