We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A central goal in ecology is investigating the impact of major perturbations, such as invasion, on the structure of biological communities. One promising line of inquiry is using co-occurrence analyses to examine how species’ traits mediate coexistence and how major ecological, climatic, and environmental disturbances can affect this relationship and underlying mechanisms. However, present communities are heavily influenced by anthropogenic behaviors and may exhibit greater or lesser resistance to invasion than communities that existed before human arrival. Therefore, to disentangle the impact of individual disturbances on mammalian communities, it is important to examine community dynamics before humans. Here, we use the North American fossil record to evaluate the co-occurrence structure of mammals across the Great American Biotic Interchange. We compiled 126 paleocommunities from the late Pliocene (4–2.5 Ma) and early Pleistocene (2.5–1 Ma). Genus-level co-occurrence was calculated to identify significantly aggregated (co-occur more than expected) and segregated (co-occur less than expected) genus pairs. A functional diversity analysis was used to calculate functional distance between genus pairs to evaluate the relationship between pair association strength and functional role. We found that the strength distribution of aggregating and segregating genus pairs does not significantly change from the late Pliocene to the early Pleistocene, even with different mammals forming the pairs, including immigrant mammals from South America. However, we did find that significant pairs, both aggregations and segregations, became more similar in their functional roles following the Plio-Pleistocene transition. Due to different mammals and ecological roles forming significant associations and the stability of co-occurrence structure across this interval, our study suggests that mammals have fundamental ways of assembling that may have been altered by humans in the present.
In response to the COVID-19 pandemic, we rapidly implemented a plasma coordination center, within two months, to support transfusion for two outpatient randomized controlled trials. The center design was based on an investigational drug services model and a Food and Drug Administration-compliant database to manage blood product inventory and trial safety.
Methods:
A core investigational team adapted a cloud-based platform to randomize patient assignments and track inventory distribution of control plasma and high-titer COVID-19 convalescent plasma of different blood groups from 29 donor collection centers directly to blood banks serving 26 transfusion sites.
Results:
We performed 1,351 transfusions in 16 months. The transparency of the digital inventory at each site was critical to facilitate qualification, randomization, and overnight shipments of blood group-compatible plasma for transfusions into trial participants. While inventory challenges were heightened with COVID-19 convalescent plasma, the cloud-based system, and the flexible approach of the plasma coordination center staff across the blood bank network enabled decentralized procurement and distribution of investigational products to maintain inventory thresholds and overcome local supply chain restraints at the sites.
Conclusion:
The rapid creation of a plasma coordination center for outpatient transfusions is infrequent in the academic setting. Distributing more than 3,100 plasma units to blood banks charged with managing investigational inventory across the U.S. in a decentralized manner posed operational and regulatory challenges while providing opportunities for the plasma coordination center to contribute to research of global importance. This program can serve as a template in subsequent public health emergencies.
We synthesize sea-level science developments, priorities and practitioner needs at the end of the 10-year World Climate Research Program Grand Challenge ’Regional Sea-Level Change and Coastal Impacts’. Sea-level science and associated climate services have progressed but are unevenly distributed. There remains deep uncertainty concerning high-end and long-term sea-level projections due to indeterminate emissions, the ice sheet response and other climate tipping points. These are priorities for sea-level science. At the same time practitioners need climate services that provide localized information including median and curated high-end sea-level projections for long-term planning, together with information to address near-term pressures, including extreme sea level-related hazards and land subsidence, which can greatly exceed current rates of climate-induced sea-level rise in some populous coastal settlements. To maximise the impact of scientific knowledge, ongoing co-production between science and practitioner communities is essential. Here we report on recent progress and ways forward for the next decade.
One in eight children experience early life stress (ELS), which increases risk for psychopathology. ELS, particularly neglect, has been associated with reduced responsivity to reward. However, little work has investigated the computational specifics of this disrupted reward response – particularly with respect to the neural response to Reward Prediction Errors (RPE) – a critical signal for successful instrumental learning – and the extent to which they are augmented to novel stimuli. The goal of the current study was to investigate the associations of abuse and neglect, and neural representation of RPE to novel and non-novel stimuli.
Methods
One hundred and seventy-eight participants (aged 10–18, M = 14.9, s.d. = 2.38) engaged in the Novelty task while undergoing functional magnetic resonance imaging. In this task, participants learn to choose novel or non-novel stimuli to win monetary rewards varying from $0 to $0.30 per trial. Levels of abuse and neglect were measured using the Childhood Trauma Questionnaire.
Results
Adolescents exposed to high levels of neglect showed reduced RPE-modulated blood oxygenation level dependent response within medial and lateral frontal cortices particularly when exploring novel stimuli (p < 0.05, corrected for multiple comparisons) relative to adolescents exposed to lower levels of neglect.
Conclusions
These data expand on previous work by indicating that neglect, but not abuse, is associated with impairments in neural RPE representation within medial and lateral frontal cortices. However, there was no association between neglect and behavioral impairments on the Novelty task, suggesting that these neural differences do not necessarily translate into behavioral differences within the context of the Novelty task.
Patients with Fontan failure are high-risk candidates for heart transplantation and other advanced therapies. Understanding the outcomes following initial heart failure consultation can help define appropriate timing of referral for advanced heart failure care.
Methods:
This is a survey study of heart failure providers seeing any Fontan patient for initial heart failure care. Part 1 of the survey captured data on clinical characteristics at the time of heart failure consultation, and Part 2, completed 30 days later, captured outcomes (death, transplant evaluation outcome, and other interventions). Patients were classified as “too late” (death or declined for transplant due to being too sick) and/or “care escalation” (ventricular assist device implanted, inotrope initiated, and/or listed for transplant), within 30 days. “Late referral” was defined as those referred too late and/or had care escalation.
Results:
Between 7/2020 and 7/2022, 77 Fontan patients (52% inpatient) had an initial heart failure consultation. Ten per cent were referred too late (6 were too sick for heart transplantation with one subsequent death, and two others died without heart transplantation evaluation, within 30 days), and 36% had care escalation (21 listed ± 5 ventricular assist device implanted ± 6 inotrope initiated). Overall, 42% were late referrals. Heart failure consultation < 1 year after Fontan surgery was strongly associated with late referral (OR 6.2, 95% CI 1.8–21.5, p=0.004).
Conclusions:
Over 40% of Fontan patients seen for an initial heart failure consultation were late referrals, with 10% dying or being declined for transplant within a month of consultation. Earlier referral, particularly for those with heart failure soon after Fontan surgery, should be encouraged.
Engaging patients, caregivers, and other stakeholders to help guide the research process is a cornerstone of patient-centered research. Lived expertise may help ensure the relevance of research questions, promote practices that are satisfactory to research participants, improve transparency, and assist with disseminating findings.
Methods:
Traditionally engagement has been conducted face-to-face in the local communities in which research operates. Decentralized platform trials pose new challenges for the practice of engagement. We used a remote model for stakeholder engagement, relying on Zoom meetings and blog communications.
Results:
Here we describe the approach used for research partnership with patients, caregivers, and clinicians in the planning and oversight of the ACTIV-6 trial and the impact of this work. We also present suggestions for future remote engagement.
Conclusions:
The ACTIV-6 experience may inform proposed strategies for future engagement in decentralized trials.
Adolescent substance use, externalizing and attention problems, and early life stress (ELS) commonly co-occur. These psychopathologies show overlapping neural dysfunction in the form of reduced recruitment of reward processing neuro-circuitries. However, it is unclear to what extent these psychopathologies show common v. different neural dysfunctions as a function of symptom profiles, as no studies have directly compared neural dysfunctions associated with each of these psychopathologies to each other.
Methods
In study 1, a latent profile analysis (LPA) was conducted in a sample of 266 adolescents (aged 13–18, 41.7% female, 58.3% male) from a residential youth care facility and the surrounding community to investigate substance use, externalizing and attention problems, and ELS psychopathologies and their co-presentation. In study 2, we examined a subsample of 174 participants who completed the Passive Avoidance learning task during functional magnetic resonance imaging to examine differential and/or common reward processing neuro-circuitry dysfunctions associated with symptom profiles based on these co-presentations.
Results
In study 1, LPA identified profiles of substance use plus rule-breaking behaviors, attention-deficit hyperactivity disorder, and ELS. In study 2, the substance use/rule-breaking profile was associated with reduced recruitment of reward processing and attentional neuro-circuitries during the Passive Avoidance task (p < 0.05, corrected for multiple comparisons).
Conclusions
Findings indicate that there is reduced responsivity of striato-cortical regions when receiving outcomes on an instrumental learning task within a profile of adolescents with substance use and rule-breaking behaviors. Mitigating reward processing dysfunction specifically may represent a potential intervention target for substance-use psychopathologies accompanied by rule-breaking behaviors.
Ordering Clostridioides difficile diagnostics without appropriate clinical indications can result in inappropriate antibiotic prescribing and misdiagnosis of hospital onset C. difficile infection. Manual processes such as provider review of order appropriateness may detract from other infection control or antibiotic stewardship activities.
Methods:
We developed an evidence-based clinical algorithm that defined appropriateness criteria for testing for C. difficile infection. We then implemented an electronic medical record–based order-entry tool that utilized discrete branches within the clinical algorithm including history of prior C. difficile test results, laxative or stool-softener administration, and documentation of unformed bowel movements. Testing guidance was then dynamically displayed with supporting patient data. We compared the rate of completed C. difficile tests after implementation of this intervention at 5 hospitals to a historic baseline in which a best-practice advisory was used.
Results:
Using mixed-effects Poisson regression, we found that the intervention was associated with a reduction in the incidence rate of both C. difficile ordering (incidence rate ratio [IRR], 0.74; 95% confidence interval [CI], 0.63–0.88; P = .001) and C. difficile–positive tests (IRR, 0.83; 95% CI, 0.76–0.91; P < .001). On segmented regression analysis, we identified a sustained reduction in orders over time among academic hospitals and a new reduction in orders over time among community hospitals.
Conclusions:
An evidence-based dynamic order panel, integrated within the electronic medical record, was associated with a reduction in both C. difficile ordering and positive tests in comparison to a best practice advisory, although the impact varied between academic and community facilities.
To describe the genomic analysis and epidemiologic response related to a slow and prolonged methicillin-resistant Staphylococcus aureus (MRSA) outbreak.
Design:
Prospective observational study.
Setting:
Neonatal intensive care unit (NICU).
Methods:
We conducted an epidemiologic investigation of a NICU MRSA outbreak involving serial baby and staff screening to identify opportunities for decolonization. Whole-genome sequencing was performed on MRSA isolates.
Results:
A NICU with excellent hand hygiene compliance and longstanding minimal healthcare-associated infections experienced an MRSA outbreak involving 15 babies and 6 healthcare personnel (HCP). In total, 12 cases occurred slowly over a 1-year period (mean, 30.7 days apart) followed by 3 additional cases 7 months later. Multiple progressive infection prevention interventions were implemented, including contact precautions and cohorting of MRSA-positive babies, hand hygiene observers, enhanced environmental cleaning, screening of babies and staff, and decolonization of carriers. Only decolonization of HCP found to be persistent carriers of MRSA was successful in stopping transmission and ending the outbreak. Genomic analyses identified bidirectional transmission between babies and HCP during the outbreak.
Conclusions:
In comparison to fast outbreaks, outbreaks that are “slow and sustained” may be more common to units with strong existing infection prevention practices such that a series of breaches have to align to result in a case. We identified a slow outbreak that persisted among staff and babies and was only stopped by identifying and decolonizing persistent MRSA carriage among staff. A repeated decolonization regimen was successful in allowing previously persistent carriers to safely continue work duties.
The purpose of this document is to highlight practical recommendations to assist acute care hospitals to prioritize and implement strategies to prevent ventilator-associated pneumonia (VAP), ventilator-associated events (VAE), and non-ventilator hospital-acquired pneumonia (NV-HAP) in adults, children, and neonates. This document updates the Strategies to Prevent Ventilator-Associated Pneumonia in Acute Care Hospitals published in 2014. This expert guidance document is sponsored by the Society for Healthcare Epidemiology (SHEA), and is the product of a collaborative effort led by SHEA, the Infectious Diseases Society of America, the American Hospital Association, the Association for Professionals in Infection Control and Epidemiology, and The Joint Commission, with major contributions from representatives of a number of organizations and societies with content expertise.
Background: Healthcare facilities have experienced many challenges during the COVID-19 pandemic, including limited personal protective equipment (PPE) supplies. Healthcare personnel (HCP) rely on PPE, vaccines, and other infection control measures to prevent SARS-CoV-2 infections. We describe PPE concerns reported by HCP who had close contact with COVID-19 patients in the workplace and tested positive for SARS-CoV-2. Method: The CDC collaborated with Emerging Infections Program (EIP) sites in 10 states to conduct surveillance for SARS-CoV-2 infections in HCP. EIP staff interviewed HCP with positive SARS-CoV-2 viral tests (ie, cases) to collect data on demographics, healthcare roles, exposures, PPE use, and concerns about their PPE use during COVID-19 patient care in the 14 days before the HCP’s SARS-CoV-2 positive test. PPE concerns were qualitatively coded as being related to supply (eg, low quality, shortages); use (eg, extended use, reuse, lack of fit test); or facility policy (eg, lack of guidance). We calculated and compared the percentages of cases reporting each concern type during the initial phase of the pandemic (April–May 2020), during the first US peak of daily COVID-19 cases (June–August 2020), and during the second US peak (September 2020–January 2021). We compared percentages using mid-P or Fisher exact tests (α = 0.05). Results: Among 1,998 HCP cases occurring during April 2020–January 2021 who had close contact with COVID-19 patients, 613 (30.7%) reported ≥1 PPE concern (Table 1). The percentage of cases reporting supply or use concerns was higher during the first peak period than the second peak period (supply concerns: 12.5% vs 7.5%; use concerns: 25.5% vs 18.2%; p Conclusions: Although lower percentages of HCP cases overall reported PPE concerns after the first US peak, our results highlight the importance of developing capacity to produce and distribute PPE during times of increased demand. The difference we observed among selected groups of cases may indicate that PPE access and use were more challenging for some, such as nonphysicians and nursing home HCP. These findings underscore the need to ensure that PPE is accessible and used correctly by HCP for whom use is recommended.
This paper introduces a formal definition of a Cyber-Physical System (CPS) in the spirit of the CPS Framework proposed by the National Institute of Standards and Technology (NIST). It shows that using this definition, various problems related to concerns in a CPS can be precisely formalized and implemented using Answer Set Programming (ASP). These include problems related to the dependency or conflicts between concerns, how to mitigate an issue, and what the most suitable mitigation strategy for a given issue would be. It then shows how ASP can be used to develop an implementation that addresses the aforementioned problems. The paper concludes with a discussion of the potentials of the proposed methodologies.
This SHEA white paper identifies knowledge gaps and challenges in healthcare epidemiology research related to coronavirus disease 2019 (COVID-19) with a focus on core principles of healthcare epidemiology. These gaps, revealed during the worst phases of the COVID-19 pandemic, are described in 10 sections: epidemiology, outbreak investigation, surveillance, isolation precaution practices, personal protective equipment (PPE), environmental contamination and disinfection, drug and supply shortages, antimicrobial stewardship, healthcare personnel (HCP) occupational safety, and return to work policies. Each section highlights three critical healthcare epidemiology research questions with detailed description provided in supplementary materials. This research agenda calls for translational studies from laboratory-based basic science research to well-designed, large-scale studies and health outcomes research. Research gaps and challenges related to nursing homes and social disparities are included. Collaborations across various disciplines, expertise and across diverse geographic locations will be critical.
Background: In February 2019, the Orange County Health Care Agency (OCHCA) identified an outbreak of Candida auris, an emerging fungus that spreads rapidly in healthcare facilities. Patients in long-term acute-care hospitals (LTACHs) and skilled nursing facilities that provide ventilator care (vSNFs) are at highest risk for C. auris colonization. With assistance from the California Department of Public Health and the Centers for Disease Control and Prevention, OCHCA instituted enhanced surveillance, communication, and screening processes for patients colonized with or exposed to C. auris. Method: OCHCA implemented enhanced surveillance by conducting point-prevalence surveys (PPSs) at all 3 LTACHs and all 14 vSNFs in the county. Colonized patients were identified through axilla/groin skin swabbing with C. auris detected by PCR and/or culture. In facilities where >1 C. auris colonized patient was found, PPSs were repeated every 2 weeks to identify ongoing transmission. Retrospective case finding was instituted at 2 LTACHs with a high burden of colonized patients; OCHCA contacted patients discharged after January 1, 2019, and offered C. auris screening. OCHCA tracked the admission or discharge of all colonized patients, and facilities with ongoing transmission were required to report transfers of any patient, regardless of colonization status. OCHCA tracked all patients discharged from facilities with ongoing transmission to ensure that accepting facilities conducted admission surveillance testing of exposed patients and implemented appropriate environmental and contact precautions. Result: From February–October 2019, 192 colonized patients were identified. All 3 LTACHs and 6 of 14 VSNFs had at least 1 C. auris–colonized patient identified on initial PPS, and 2 facilities had ongoing transmission identified on serial PPS. OCHCA followed 96 colonized patients transferred a total of 230 times (an average of 2.4 transfers per patient) (Fig. 1) and 677 exposed patients discharged from facilities with ongoing transmission (Fig. 2). Admission screening of 252 exposed patients on transfer identified 13 (5.2%) C. auris–colonized patients. As of November 1, 2019, these 13 patients were admitted 21 times to a total of 6 acute-care hospitals, 2 LTACHs, and 3 vSNFs. Transferring facilities did not consistently communicate the colonized patient’s status and the requirements for isolation and testing of exposed patients. Conclusion: OCHCA oversight of interfacility transfer, though labor-intensive, improved identification of patients colonized with C. auris and implementation of appropriate environmental and contact precautions, reducing the risk of transmission in receiving healthcare facilities.
Background: In July 2017, the Ethiopian Public Health Institute (EPHI) launched an antimicrobial resistance (AMR) surveillance network at 4 sentinel laboratories. The National Clinical Bacteriology and Mycology Laboratory (NRL) at EPHI performs monthly confirmatory testing on a subset of isolates submitted by these sites. We assessed the existing confirmatory testing program to identify gaps and develop solutions, including a monitoring and evaluation (M&E) system. Methods: We assembled a technical working group (TWG) of key stakeholders. Laboratory site visits included workflow observation, process mapping, document review, and technologist interviews. Proposed solutions to observed gaps were drafted in formats consistent with their intended application. Feedback from the TWG was incorporated into final drafts. Available AMR network staff members were trained remotely, and they will train remaining staff. Results: Table 1 describes major gaps and solutions identified. Conclusions: Confirmatory testing provides a mechanism to evaluate laboratory testing proficiency, target improvements, and estimate surveillance data quality, yet standardized methods were lacking. Our efforts highlight key components of confirmatory testing programs and provide a model for use in laboratories with similar needs.
The magnetic resonance imaging (MRI) appearance of the brain and spinal cord in humans with neuroangiostrongyliasis (NA) due to Angiostrongylus cantonensis infection has been well reported. Equivalent studies in animals are lacking. This case series describes clinical and MRI findings in 11 dogs with presumptively or definitively diagnosed NA. MRI of the brain and/or spinal cord was performed using high-field (1.5 T) or low-field (0.25 T) scanners using various combinations of transverse, sagittal, dorsal and three-dimensional (3D) T1-weighted (T1W), transverse, sagittal and dorsal T2-weighted (T2W), T2W fluid-attenuated inversion recovery (FLAIR) and T2*-weighted (T2*W) gradient echo (GRE), dorsal T2W short tau inversion recovery (STIR) and post-gadolinium transverse, sagittal, dorsal and 3D T1W and transverse T2W FLAIR sequences. In 4/6 cases where the brain was imaged, changes consistent with diffuse meningoencephalitis were observed. Evidence of meningeal involvement was evident even when not clinically apparent. The spinal cord was imaged in 9 dogs, with evidence of meningitis and myelitis detected in regions consistent with the observed neuroanatomical localization. Pathognomonic changes of neural larva migrans, as described in some human patients with NA, were not detected. NA should be considered in the differential diagnosis of dogs with MRI evidence of focal or diffuse meningitis, myelitis and/or encephalitis, especially in areas where A. cantonensis is endemic. If not precluded by imaging findings suggestive of brain herniation, cerebrospinal fluid (CSF) collection for cytology, fluid analysis, real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA) testing should be considered mandatory in such cases after the MRI studies.
Studies suggest that alcohol consumption and alcohol use disorders have distinct genetic backgrounds.
Methods
We examined whether polygenic risk scores (PRS) for consumption and problem subscales of the Alcohol Use Disorders Identification Test (AUDIT-C, AUDIT-P) in the UK Biobank (UKB; N = 121 630) correlate with alcohol outcomes in four independent samples: an ascertained cohort, the Collaborative Study on the Genetics of Alcoholism (COGA; N = 6850), and population-based cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC; N = 5911), Generation Scotland (GS; N = 17 461), and an independent subset of UKB (N = 245 947). Regression models and survival analyses tested whether the PRS were associated with the alcohol-related outcomes.
Results
In COGA, AUDIT-P PRS was associated with alcohol dependence, AUD symptom count, maximum drinks (R2 = 0.47–0.68%, p = 2.0 × 10−8–1.0 × 10−10), and increased likelihood of onset of alcohol dependence (hazard ratio = 1.15, p = 4.7 × 10−8); AUDIT-C PRS was not an independent predictor of any phenotype. In ALSPAC, the AUDIT-C PRS was associated with alcohol dependence (R2 = 0.96%, p = 4.8 × 10−6). In GS, AUDIT-C PRS was a better predictor of weekly alcohol use (R2 = 0.27%, p = 5.5 × 10−11), while AUDIT-P PRS was more associated with problem drinking (R2 = 0.40%, p = 9.0 × 10−7). Lastly, AUDIT-P PRS was associated with ICD-based alcohol-related disorders in the UKB subset (R2 = 0.18%, p < 2.0 × 10−16).
Conclusions
AUDIT-P PRS was associated with a range of alcohol-related phenotypes across population-based and ascertained cohorts, while AUDIT-C PRS showed less utility in the ascertained cohort. We show that AUDIT-P is genetically correlated with both use and misuse and demonstrate the influence of ascertainment schemes on PRS analyses.
Given the rapid rate of technological innovation and a desire to be proactive in addressing potential ethical challenges that arise in contexts of innovation, engineers must learn to engage in value-sensitive design – design that is responsive to a broad range of values that are implicated in the research, development, and application of technologies. One widely-used tool is Life Cycle Assessment (LCA). Physical products, as with organisms, have a life cycle, starting with extraction of raw materials, and including refining, transport, manufacturing, use, and finally end-of-life treatment and disposal. LCA is a quantitative modeling framework that can estimate emissions that occur throughout a product’s life cycle, as well as any harmful effects that these emissions have on the environment and/or public health. Importantly, LCA tools allow engineers to evaluate multiple types of environmental and health impacts simultaneously and are not limited to a single endpoint or score. However, LCA is only useful to the extent that its models accurately include the full range of values implicated in the use of a technology, and to the extent that stakeholders, from designers to decisionmakers, understand and are able to communicate these values and how they are assigned. Effective LCA requires good ethical training to understand these values.