We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Hand, foot, and mouth disease (HFMD) shows spatiotemporal heterogeneity in China. A spatiotemporal filtering model was constructed and applied to HFMD data to explore the underlying spatiotemporal structure of the disease and determine the impact of different spatiotemporal weight matrices on the results. HFMD cases and covariate data in East China were collected between 2009 and 2015. The different spatiotemporal weight matrices formed by Rook, K-nearest neighbour (KNN; K = 1), distance, and second-order spatial weight matrices (SO-SWM) with first-order temporal weight matrices in contemporaneous and lagged forms were decomposed, and spatiotemporal filtering model was constructed by selecting eigenvectors according to MC and the AIC. We used MI, standard deviation of the regression coefficients, and five indices (AIC, BIC, DIC, R2, and MSE) to compare the spatiotemporal filtering model with a Bayesian spatiotemporal model. The eigenvectors effectively removed spatial correlation in the model residuals (Moran’s I < 0.2, p > 0.05). The Bayesian spatiotemporal model’s Rook weight matrix outperformed others. The spatiotemporal filtering model with SO-SWM was superior, as shown by lower AIC (92,029.60), BIC (92,681.20), and MSE (418,022.7) values, and higher R2 (0.56) value. All spatiotemporal contemporaneous structures outperformed the lagged structures. Additionally, eigenvector maps from the Rook and SO-SWM closely resembled incidence patterns of HFMD.
Sjögren's syndrome (SS) is a chronic autoimmune disease caused by immune system disorders. The main clinical manifestations of SS are dry mouth and eyes caused by the destruction of exocrine glands, such as the salivary and lacrimal glands, and systemic manifestations, such as interstitial pneumonia, interstitial nephritis and vasculitis. The pathogenesis of this condition is complex. However, this has not been fully elucidated. Treatment mainly consists of glucocorticoids, disease-modifying antirheumatic drugs and biological agents, which can only control inflammation but not repair the tissue. Therefore, identifying methods to regulate immune disorders and repair damaged tissues is imperative. Cell therapy involves the transplantation of autologous or allogeneic normal or bioengineered cells into the body of a patient to replace damaged cells or achieve a stronger immunomodulatory capacity to cure diseases, mainly including stem cell therapy and immune cell therapy. Cell therapy can reduce inflammation, relieve symptoms and promote tissue repair and regeneration of exocrine glands such as the salivary glands. It has broad application prospects and may become a new treatment strategy for patients with SS. However, there are various challenges in cell preparation, culture, storage and transportation. This article reviews the research status and prospects of cell therapies for SS.
We aimed to examine the association between dietary Se intake and CVD risk in Chinese adults.
Design:
This prospective cohort study included adults above 20 years old in the China Health and Nutrition Survey (CHNS), and they were followed up from 1997 to 2015 (n 16 030). Dietary data were retrieved from CHNS, and a 3-d, 24-h recall of food intake was used to assess the cumulative average intake of dietary Se, which was divided into quartiles. The Cox proportional hazards model was adopted to analyse the association between dietary Se intake and incident CVD risk.
A total of 663 respondents developed CVD after being followed up for a mean of 9·9 years (median 9 years). The incidence of CVD was 4·3, 3·7, 4·6 and 4·0 per 1000 person-years across the quartiles of cumulative Se intake. After adjusting all potential factors, no significant associations were found between cumulative Se intake and CVD risk. No interactions were found between Se intake and income, urbanisation, sex, region, weight, hypertension and CVD risk.
Conclusion:
We found no association between dietary Se and CVD.
A business ecosystem is a community of multiple co-evolving actors with interdependent product offerings organized around a specific value proposition. While the extant literature focuses on these two structural elements of ecosystems that existed ex ante, we challenge this notion with our core discovery that ecosystem actors emerge in an ex post dynamic process. With a longitudinal qualitative study of the vertically disintegrated part of the Chinese mobile phone industry, we develop a two-dimensional process model of ecosystem emergence, namely the temporal dimension that delineates three processal stages of ecosystem emergence and the spatial dimension that highlights an architectural pattern of reciprocities between value chain and resource pool to enable the ecosystem emergence. We also offer inter-temporal enabling conditions during ecosystem evolution. These findings enable us to complement the ecosystem literature by elaborating the antecedents, outcomes, and enabling conditions of ecosystem emergence in relation to multiple types of ecosystem actors. We also shed light on the value chain (re-)configuring process which derives from the reciprocity between value chains and ecosystem resources.
A deep ice core was drilled at Dome A, Antarctic Plateau, East Antarctica, which started with the installation of a casing in January 2012 and reached 800.8 m in January 2017. To date, a total of 337 successful ice-core drilling runs have been conducted, including 118 runs to drill the pilot hole. The total drilling time was 52 days, of which eight days were required for drilling down and reaming the pilot hole, and 44 days for deep ice coring. The average penetration depths of individual runs were 1 and 3.1 m for the pilot hole drilling and deep ice coring, respectively. The quality of the ice cores was imperfect in the brittle zone (650−800 m). Some of the troubles encountered are discussed for reference, such as armoured cable knotting, screws falling into the hole bottom, and damaged parts, among others.
The aim of this study is to evaluate the clinical characteristics and outcomes in 2019 coronavirus disease (COVID-19) patients and to help clinicians perform correct treatment and evaluate prognosis and guide the treatment.
Methods:
Patients totaling 239 were diagnosed with COVID-19 and were included in this study. Patients were divided into the improvement group and the death group according to their outcome (improvement or death). Clinical characteristics and laboratory parameters were collected from medical records. Continuous variables were tested by an independent sample T test, and categorical variables were analyzed by the chi-square test or Fisher’s exact test. The Cox proportional hazard regression model was used for survival analysis in death patients. The time-dependent area under curves (AUC) based on white blood cell count, lymphocyte count, neutrophil count by age, blood urea nitrogen, and C-reactive protein were plotted.
Results:
Efficacy evaluation indicated that 99 (41.4%) patients had deteriorated, and 140 (58.6%) patients had improved. Oxygen saturation, hemoglobin levels, infection-related indicators, lymphocyte and platelet counts, C-reactive protein, serum albumin, liver and kidney function, and lactate dehydrogenase in improvement group were statistically significant between the improvement and death groups. A survival analysis revealed that comorbidities, lymphocyte counts, platelet count, serum albumin, C-reactive protein level, and renal dysfunction may be risk factors in patients with COVID-19.
Conclusion:
Patients with comorbidities, lower lymphocyte counts in hemogram, platelet count and serum albumin, high C-reactive protein level, and renal dysfunction may have higher risk for death. More attention should be given to risk management in the progression of COVID-19.
To understand the characteristics and influencing factors related to cluster infections in Jiangsu Province, China, we investigated case reports to explore transmission dynamics and influencing factors of scales of cluster infection. The effectiveness of interventions was assessed by changes in the time-dependent reproductive number (Rt). From 25th January to 29th February, Jiangsu Province reported a total of 134 clusters involving 617 cases. Household clusters accounted for 79.85% of the total. The time interval from onset to report of index cases was 8 days, which was longer than that of secondary cases (4 days) (χ2 = 22.763, P < 0.001) and had a relationship with the number of secondary cases (the correlation coefficient (r) = 0.193, P = 0.040). The average interval from onset to report was different between family cluster cases (4 days) and community cluster cases (7 days) (χ2 = 28.072, P < 0.001). The average time interval from onset to isolation of patients with secondary infection (5 days) was longer than that of patients without secondary infection (3 days) (F = 9.761, P = 0.002). Asymptomatic patients and non-familial clusters had impacts on the size of the clusters. The average reduction in the Rt value in family clusters (26.00%, 0.26 ± 0.22) was lower than that in other clusters (37.00%, 0.37 ± 0.26) (F = 4.400, P = 0.039). Early detection of asymptomatic patients and early reports of non-family clusters can effectively weaken cluster infections.
To examine the association between physician–patient treatments shared decision making (SDM), patient satisfaction, and adoption of a new health technology.
Methods
A cross-sectional study was conducted from July 2016 to October 2016 in Fujian Province and Shanghai, in Eastern China. A total of 542 physicians and 619 patients in eleven hospitals were surveyed. Patients and their treating physicians completed self-reported questionnaires on patient–physician SDM, satisfaction with treatment decision making and adoption of a new health technology. Correlation analysis, multivariate logistic regression and multivariate linear regression were performed.
Results
The majority (68.20 percent) of patients preferred SDM. Involvement of patients in SDM was positively associated with their satisfaction with treatment decision making (p < .001) and adoption of a new health technology (p < .05). Better concordance between their preference and actual SDM was positively associated with patients' adoption behavior (p < .05), but no statistically significant association was found between concordance and satisfaction.
Conclusion
SDM was the most important predictor of patients' satisfaction with decision making and adoption of a new health technology. Therefore, better communication between physicians and patients is recommended to improve their SDM, increase patient satisfaction and to assist with the adoption of new technologies. Training healthcare provider and teaching communication skills in working with patients in the initial stage of technology diffusion is required.
A one-dimensional steady-state model for stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) processes in laser-irradiated plasmas is presented. Based on a novel “predictor-corrector” method, the model is capable to deal with broadband scattered light and inhomogeneous plasmas, exhibiting robustness and high efficiency. Influences of the electron density and temperature on the linear gains of both SRS and SBS are investigated, which indicates that the SRS gain is more sensitive to the electron density and temperature than that of the SBS. For the low-density case, the SBS dominates the scattering process, while the SRS exhibits much higher reflectivity in the high-density case. The nonlinear saturation mechanisms and competition between SRS and SBS are included in our model by a phenomenological method. The typical anti-correlation between SRS and SBS versus electron density is reproduced in the model. Calculations of the reflectivities are qualitatively in agreement with the typical results of experiments and simulations.
Influenza activity is subject to environmental factors. Accurate forecasting of influenza epidemics would permit timely and effective implementation of public health interventions, but it remains challenging. In this study, we aimed to develop random forest (RF) regression models including meterological factors to predict seasonal influenza activity in Jiangsu provine, China. Coefficient of determination (R2) and mean absolute percentage error (MAPE) were employed to evaluate the models' performance. Three RF models with optimum parameters were constructed to predict influenza like illness (ILI) activity, influenza A and B (Flu-A and Flu-B) positive rates in Jiangsu. The models for Flu-B and ILI presented excellent performance with MAPEs <10%. The predicted values of the Flu-A model also matched the real trend very well, although its MAPE reached to 19.49% in the test set. The lagged dependent variables were vital predictors in each model. Seasonality was more pronounced in the models for ILI and Flu-A. The modification effects of the meteorological factors and their lagged terms on the prediction accuracy differed across the three models, while temperature always played an important role. Notably, atmospheric pressure made a major contribution to ILI and Flu-B forecasting. In brief, RF models performed well in influenza activity prediction. Impacts of meteorological factors on the predictive models for influenza activity are type-specific.
We present an experimental study of the reversal of the large-scale circulation (LSC) in quasi-two-dimensional turbulent Rayleigh–Bénard convection. It is found that there exists a transition in the Rayleigh number ($Ra$) dependence of the reversal rate $f$ with two distinct scalings: for $Ra$ less than a transitional value $Ra_{t}$, the non-dimensionalized reversal rate $ft_{E}\sim Ra^{-1.09}$; however, for higher $Ra$ the scaling changes to $ft_{E}\sim Ra^{-3.06}$, where $t_{E}$ is the turnover time of the LSC. Flow visualization shows that this regime transition originates from a change in flow topology from a single-roll state to a new, less stable, abnormal single-roll state with substructures inside the single roll. The emergence of the substructures inside the LSC lowers the energy barrier for the flow reversals to occur and leads to a slower decay of $f$ with $Ra$. Detailed analysis reveals that, although it is the corner rolls that trigger the reversal event, the probability for the occurrence of reversals mainly depends on the stability of the LSC. This is supported by a model we proposed to predict the critical condition for the transition, which agrees well with the experimental results.
In this paper a one-dimensional numerical study on the nonlinear behaviour of an electrically charged jet of Oldroyd-B viscoelastic, Taylor–Melcher leaky dielectric liquid is carried out. The effect of surface charge level, axial wavenumber and finite conductivity on the nonlinear evolution of the jet is investigated. Different structures including beads-on-a-string with/without satellite droplets, quasi-spikes and spikes are detected, and their domains in the plane of the non-dimensional axial wavenumber and the electrical Bond number are illustrated. The underlying mechanisms in the formation of the structures are examined. It is found that tangential electrostatic force plays a key role in the formation of a quasi-spike structure. Decreasing liquid conductivity may lead to a decrease in the size of satellite droplets or even the complete removal of them from a beads-on-a-string structure, induce the transition from a beads-on-a-string to a quasi-spike structure or postpone the appearance of a spike. On the other hand, finite conductivity has little influence on filament thinning in a beads-on-a-string structure, owing to the fact that the electrostatic forces are of secondary importance compared with the capillary force. The difference between the finite conductivity, large conductivity and other cases is elucidated. An experiment is carried out to observe spike structures.
Novel NiMoO4-integrated electrode materials were successfully prepared by solvothermal method using Na2MoO4·2H2O and NiSO4·6H2O as main raw materials, water, and ethanol as solvents. The morphology, phase, and structure of the as-prepared materials were characterized by SEM, XRD, Raman, and FT-IR. The electrochemical properties of the materials in supercapacitors were investigated by cyclic voltammetry, constant current charge–discharge, and electrochemical impedance spectroscopy techniques. The effects of volume ratio of water to ethanol (W/E) in solvent on the properties of the product were studied. The results show that the pure phase monoclinic crystal NiMoO4 product can be obtained when the W/E is 2:1. The diameter and length are 0.1–0.3 µm and approximately 3 µm, respectively. As an active material for supercapacitor, the NiMoO4 nanorods material delivered a discharge specific capacitance of 672, 498, and 396 F/g at a current density of 4, 7, and 10 A/g, respectively. The discharge specific capacitance slightly decreased from 815 to 588 F/g with a retention of 72% after 1000 cycles at a current density of 1 A/g. With these superior capacitance properties, the novel NiMoO4 integrated electrode materials could be considered as promising material for supercapacitors.
Mastery of strengthening strategies to achieve high-capacity anodes for lithium-ion batteries can shed light on understanding the nature of diffusion-induced stress and offer an approach to use submicro-sized materials with an ultrahigh capacity for large-scale batteries. Here, we report solute strengthening in a series of silicon (Si)–germanium (Ge) alloys. When the larger solute atom (Ge) is added to the solvent atoms (Si), a compressive stress is generated in the vicinity of Ge atoms. This local stress field interacts with resident dislocations and subsequently impedes their motion to increase the yield stress in the alloys. The addition of Ge into Si substantially improves the capacity retention, particularly in Si0.50Ge0.50, aligning with literature reports that the Si/Ge alloy showed a maximum yield stress in Si0.50Ge0.50. In situ X-ray diffraction studies on the Si0.50Ge0.50 electrode show that the phase change undergoes three subsequent steps during the lithiation process: removal of surface oxide layer, formation of cluster-size Lix(Si,Ge), and formation of crystalline Li15(Si,Ge)4. Furthermore, the lithiation process starts from higher index facets, i.e., (220) and (311), then through the low index facet (111), suggesting the orientation-dependence of the lithiation process in the Si0.50Ge0.50 electrode.
To investigate the prevalence of Cyclospora cayetanensis in a longitudinal study and to conduct a population genetic analysis, fecal specimens from 6579 patients were collected during the cyclosporiasis – prevalent seasons in two urban areas of central China in 2011–2015. The overall incidence of C. cayetanensis infection was 1·2% (76/6579): 1·6% (50/3173) in Zhengzhou and 0·8% (26/3406) in Kaifeng (P < 0·05), with infections in all age groups (P > 0·05). All the isolates clustered in the C. cayetanensis clade based on the small subunit ribosomal RNA gene sequence phylogenetic analysis. There were 45 specimens positive for all the five C. cayetanensis microsatellite loci, and formed 29 multilocus genotypes (MLGs). The phylogenetic relationships of 54 distinct MLGs (including 25 known reference MLGs), based on the concatenated multilocus sequences, formed three main clusters. A population structure analysis showed that the 79 isolates (including 34 known reference isolates) of C. cayetanensis produced three distinct subpopulations based on allelic profile data. In conclusion, we determined the frequency of C. cayetanensis infection in humans in Henan Province. The clonal population structure of the human C. cayetanensis isolates showed linkage disequilibrium and three distinct subpopulations.
The effects of insulating lids on the convection beneath were investigated experimentally using rectangular convection cells in the flux Rayleigh number range $2.3\times 10^{9}\leqslant Ra_{F}\leqslant 1.8\times 10^{11}$ and cylindrical cells in the range $1.4\times 10^{10}\leqslant Ra_{F}\leqslant 1.2\times 10^{12}$ with the Prandtl number $Pr$ fixed at 4.3. It is found that the presence of the insulating lids leads to reduction of the global heat transfer efficiency as expected, which primarily depends on the insulating area but is insensitive to the detailed insulating patterns. At the leading-order level, the magnitude of temperature fluctuations in the bulk fluid is, again, found to be insensitive to the insulating pattern and mainly depends on the insulating area; while the temperature probability density function in the bulk is essentially invariant with respect to both the insulating area and the spatial pattern of the lids. The flow dynamics, on the other hand, is sensitive to both the covering area and the spatial distribution of the lids. At fixed $Ra_{F}$, the flow strength is found to increase with increasing insulating area so as to transfer the same amount of heat through a smaller cooling area. Moreover, for a constant insulating area, a symmetric insulating pattern results in a symmetric flow pattern, i.e. double-roll structure; whereas an asymmetric insulating pattern leads to asymmetric flow, i.e. single-roll structure. It is further found that the symmetry breaking of the insulating pattern leads to a stronger flow that enhances the horizontal velocity more than the vertical velocity.
This article outlines the evolution of a rescue team in responding to adenovirus prevention with a deployable field hospital. The local governments mobilized a shelter hospital and a rescue team consisting of 59 members to assist with rescue and response efforts after an epidemic outbreak of adenovirus. We describe and evaluate the challenges of preparing for deployment, field hospital maintenance, treatment mode, and primary treatment methods. The field hospital established at the rescue scene consisted of a medical command vehicle, a computed tomography shelter, an X-ray shelter, a special laboratory shelter, an oxygen and electricity supply vehicle, and epidemic prevention and protection equipment. The rescue team comprised paramedics, physicians, X-ray technicians, respiratory therapists, and logistical personnel. In 22 days, more than 3000 patients with suspected adenovirus infection underwent initial examinations. All patients were properly treated, and no deaths occurred. After emergency measures were implemented, the spread of adenovirus was eventually controlled. An emergency involving infectious diseases in less-developed regions demands the rapid development of a field facility with specialized medical personnel when local hospital facilities are either unavailable or unusable. An appropriate and detailed prearranged action plan is important for infectious diseases prevention. (Disaster Med Public Health Preparedness. 2018;12:109–114)
Marine Oxygen Isotope Stage (MIS) 2, with its profound environmental and climatic changes from before the last glacial maximum (LGM) to the last deglaciation, is an ideal period for understanding the evolution of the East Asian summer monsoon (EASM) and Indian summer monsoon (ISM), two Asian monsoon sub-systems. With 875 stable oxygen isotope ratios and 43 230Th dates from stalagmites in Sanxing Cave, southwestern China, we construct and interpret a new, replicated, Asian summer monsoon (ASM) record covering 30.9–9.7 ka with decadal resolution. δ18O records from this site and other reported Chinese caves display similar long-term orbitally dominated trends and synchronous millennial-scale strong and weak monsoonal events associated with climate changes in high northern latitudes. Interestingly, Sanxing δ18O and Arabian Sea records show a weakening ISM from 22 to 17 ka, while the Hulu and Qingtian records from East and Central China express a 3-ka intensifying EASM from 20 to 17 ka. This decoupling between EASM and ISM may be due to different sensitivities of the two ASM sub-systems in response to internal feedback mechanisms associated with the complex geographical or land-ocean configurations.
Human adenovirus type 55 (HAdV-55) has recently caused multiple outbreaks. This study examined polymorphisms in CD46 to determine their involvement in HAdV-55 infection.
Methods
A total of 214 study subjects infected with HAdV-55 were included in our study. The study subjects were divided into those with silent infections (n=91), minor infections (n=85), and severe infections (n=38). Ten single nucleotide polymorphisms (SNPs) from CD46 were examined.
Results
Compared with the AA genotype, the TT genotype at rs2724385 (CD46, A/T) was associated with a protective effect against disease occurrence, with an odds ratio (95% confidence interval) of 0.20 (0.04-0.97) (P=0.038). There were no significant differences between the patients with minor and severe infection and those who had silent HAdV-55 infection in the other CD46 SNPs. We next compared the polymorphisms of these genes according to disease severity in HAdV-55-infected patients with clinical symptoms. The results showed that there were no significant differences between minor infections and severe infections.
Conclusions
Our results suggested that the CD46 SNP at rs2724385 is associated with the occurrence of disease in HAdV-55-infected patients. A much larger number of samples is required to understand the role of CD46 polymorphisms in the occurrence and progression of infection by HAdV-55. (Disaster Med Public Health Preparedness. 2018;12:427–430)