We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Remote center-of-motion (RCM) manipulators are a key issue in minimally invasive surgeries (MIS). The existing RCM parallel mechanisms (PMs) can only generate RCM motion based on the invariant RCM. To provide mobility for RCM, this paper designed a new family of RCM PMs with movable RCM that features a double-stage topological structure. Drawing mainly on configuration evolution and Lie-group, a general approach is proposed to design double-stage PMs with movable RCM. Feasible limbs for 2R1T RCM motion are enumerated and used to construct the secondary PM. Type synthesis of the primary PMs that realize movable RCM is accomplished based on the method presented. Different connection styles between the two stages that ensure the geometrical conditions of RCM motion are designed. Using different connection styles, double-stage PMs with movable RCM are constructed. These new RCM PMs can realize precise positioning of RCM by taking advantage of the primary PMs, which indicates their potential application prospects in MIS.
Retropharyngeal lymphadenectomy is challenging. This study investigated a minimally invasive approach to salvage retropharyngeal lymphadenectomy in patients with nasopharyngeal carcinoma.
Methods
An anatomical study of four fresh cadaveric heads was conducted to demonstrate the relevant details of retropharyngeal lymphadenectomy using the endoscopic transoral medial pterygomandibular fold approach. Six patients with nasopharyngeal cancer with retropharyngeal lymph node recurrence, who underwent retropharyngeal lymphadenectomy with the endoscopic transoral medial pterygomandibular fold technique at the Eye and ENT Hospital of Fudan University from July to December 2021, were included in this study.
Results
The anatomical study demonstrated that the endoscopic transoral medial pterygomandibular fold approach offers a short path and minimally invasive approach to the retropharyngeal space. The surgical procedure was well tolerated by all patients, with no significant post-operative complications.
Conclusion
The endoscopic transoral medial pterygomandibular fold approach is safe and efficient for retropharyngeal lymphadenectomy.
Let $k \geqslant 2$ be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution $\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$ by multidimensional contour integration, thereby generalising the Deshouillers–Dress–Tenenbaum (DDT) arcsine law on divisors where $k=2$. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.
Recent arguments claim that behavioral science has focused – to its detriment – on the individual over the system when construing behavioral interventions. In this commentary, we argue that tackling economic inequality using both framings in tandem is invaluable. By studying individuals who have overcome inequality, “positive deviants,” and the system limitations they navigate, we offer potentially greater policy solutions.
We report that vertical vibration with small amplitude and high frequency can tame convective heat transport in Rayleigh–Bénard convection in a turbulent regime. When vertical vibration is applied, a dynamically averaged ‘anti-gravity’ results that stabilizes the thermal boundary layer and inhibits the eruption of thermal plumes. This eventually leads to the attenuation of the intensity of large-scale mean flow and a significant suppression of turbulent heat transport. Accounting for both the thermally led buoyancy and the vibration-induced anti-gravitational effects, we propose an effective Rayleigh number that helps to extend the Grossmann–Lohse theory to thermal vibrational turbulence. The prediction of the reduction on both the Nusselt and Reynolds numbers obtained by the extended model is found to agree well with the numerical data. In addition, vibrational influences on the mean flow structure and the temporal evolution of Nusselt and Reynolds numbers are investigated. The non-uniform characteristic of vibration-induced ‘anti-gravity’ is discussed. The present findings provide a powerful basis for studying thermal vibrational turbulence and put forward a novel strategy for actively controlling thermal turbulence.
Surfactant and polymer flooding, alone or in combination, are common and effective chemical EOR methods. This chapter reviews the main physical mechanisms and presents how the corresponding mathematical flow models are implemented as an add-on module to MRST to provide a powerful and flexible tool for investigating flooding processes in realistic reservoir scenarios. Using a so-called limited-compositional models, surfactant and polymer are both assumed to be transported in the water phase only, but also adsorbed within the rock. The hydrocarbon phases are described with the standard three-phase black-oil equations. The resulting flow models also take several physical effects into account, such as chemical adsorption, inaccessible pore space, permeability reduction, effective solution viscosities, capillary pressure alteration, relative permeability alteration, and so on. The new simulator is implemented using the object-oriented, automatic differentiation (AD-OO) framework from MRST, and can readily utilize features such as efficient iterative linear solvers with constrained pressure residual (CPR) preconditioners, efficient implicit and sequential solution strategies, advanced time-step controls, improved spatial discretizations, etc. We describe how the computation of fluid properties can be decomposed into state functions for better granularity and present several numerical examples that demonstrate the software and illustrate different physical effects. We also discuss the resolution of trailing chemical waves and validate our implementation against a commercial simulator.
Cotton fibre yield and quality are markedly influenced by drought and high-temperature stress. We examined the traits of the leaf stomata in 39 cotton genotypes subjected to exogenous phytohormone abscisic acid (ABA) signalling, electrolyte leakage under 40°C thermal stress, and relative GhHsfA, GhbZIP and GhHSP70 expression levels under two treatments. Stomatal density and area ranged from 66 to 182/mm2 and 663 to 1305 μm2, respectively. Under exogenous ABA signalling, the changes in stomatal aperture (ΔSAp) were in the range of 2.5–31.2%; ΔSAp and relative GhHsfA, GhbZIP and GhHSP70 expression levels were significantly correlated, respectively. Electrolyte leakage increased unequally among cotton genotypes after heat stress. The changes in electrolyte leakage (ΔEL) and relative GhHsfA, GhbZIP and GhHSP70 expression levels were very strongly correlated, respectively. Their relative expression levels could be used as references for the rapid identification of stress-tolerant cotton strains. Cluster analysis of the 39 cotton genotypes indicated that Xinluzao36, Shiyang1, shinong98-7 and Zhongmiansuo293 are heat- and drought-resistant. We integrated both analysis of physiological parameters and molecular methods to identify cotton varieties with the drought and heat tolerance, in order to provide a reference for the selection of materials and methods for the research and production of cotton.
The upsurge in the number of people affected by the COVID-19 is likely to lead to increased rates of emotional trauma and mental illnesses. This article systematically reviewed the available data on the benefits of interventions to reduce adverse mental health sequelae of infectious disease outbreaks, and to offer guidance for mental health service responses to infectious disease pandemic. PubMed, Web of Science, Embase, PsycINFO, WHO Global Research Database on infectious disease, and the preprint server medRxiv were searched. Of 4278 reports identified, 32 were included in this review. Most articles of psychological interventions were implemented to address the impact of COVID-19 pandemic, followed by Ebola, SARS, and MERS for multiple vulnerable populations. Increasing mental health literacy of the public is vital to prevent the mental health crisis under the COVID-19 pandemic. Group-based cognitive behavioral therapy, psychological first aid, community-based psychosocial arts program, and other culturally adapted interventions were reported as being effective against the mental health impacts of COVID-19, Ebola, and SARS. Culturally-adapted, cost-effective, and accessible strategies integrated into the public health emergency response and established medical systems at the local and national levels are likely to be an effective option to enhance mental health response capacity for the current and for future infectious disease outbreaks. Tele-mental healthcare services were key central components of stepped care for both infectious disease outbreak management and routine support; however, the usefulness and limitations of remote health delivery should also be recognized.
We perform a numerical study of the heat transfer and flow structure of Rayleigh–Bénard (RB) convection in (in most cases regular) porous media, which are comprised of circular, solid obstacles located on a square lattice. This study is focused on the role of porosity $\unicode[STIX]{x1D719}$ in the flow properties during the transition process from the traditional RB convection with $\unicode[STIX]{x1D719}=1$ (so no obstacles included) to Darcy-type porous-media convection with $\unicode[STIX]{x1D719}$ approaching 0. Simulations are carried out in a cell with unity aspect ratio, for Rayleigh number $Ra$ from $10^{5}$ to $10^{10}$ and varying porosities $\unicode[STIX]{x1D719}$, at a fixed Prandtl number $Pr=4.3$, and we restrict ourselves to the two-dimensional case. For fixed $Ra$, the Nusselt number $Nu$ is found to vary non-monotonically as a function of $\unicode[STIX]{x1D719}$; namely, with decreasing $\unicode[STIX]{x1D719}$, it first increases, before it decreases for $\unicode[STIX]{x1D719}$ approaching 0. The non-monotonic behaviour of $Nu(\unicode[STIX]{x1D719})$ originates from two competing effects of the porous structure on the heat transfer. On the one hand, the flow coherence is enhanced in the porous media, which is beneficial for the heat transfer. On the other hand, the convection is slowed down by the enhanced resistance due to the porous structure, leading to heat transfer reduction. For fixed $\unicode[STIX]{x1D719}$, depending on $Ra$, two different heat transfer regimes are identified, with different effective power-law behaviours of $Nu$ versus $Ra$, namely a steep one for low $Ra$ when viscosity dominates, and the standard classical one for large $Ra$. The scaling crossover occurs when the thermal boundary layer thickness and the pore scale are comparable. The influences of the porous structure on the temperature and velocity fluctuations, convective heat flux and energy dissipation rates are analysed, further demonstrating the competing effects of the porous structure to enhance or reduce the heat transfer.
We hypothesize that the tumor necrosis factor-α (TNF-α) may play a role in disturbing the effect of selective serotonin reuptake inhibitor (SSRI) on the striatal connectivity in patients with major depressive disorder (MDD).
Methods
We performed a longitudinal observation by combining resting-state functional magnetic resonance imaging (rs-fMRI) and biochemical analyses to identify the abnormal striatal connectivity in MDD patients, and to evaluate the effect of TNF-α level on these abnormal connectivities during SSRI treatment. Eighty-five rs-fMRI scans were collected from 25 MDD patients and 35 healthy controls, and the scans were repeated for all the patients before and after a 6-week SSRI treatment. Whole-brain voxel-wise functional connectivity (FC) was calculated by correlating the rs-fMRI time courses between each voxel and the striatal seeds (i.e. spherical regions placed at the striatums). The level of TNF-α in serum was evaluated by Milliplex assay. Factorial analysis was performed to assess the interaction effects of ‘TNF-α × treatment’ in the regions with between-group FC difference.
Results
Compared with controls, MDD patients showed significantly higher striatal FC in the medial prefrontal cortex (MPFC) and bilateral middle/superior temporal cortices before SSRI treatment (p < 0.001, uncorrected). Moreover, a significant interaction effect of ‘TNF-α × treatment’ was found in MPFC-striatum FC in MDD patients (p = 0.002), and the significance remained after adjusted for age, gender, head motion, and episode of disease.
Conclusion
These findings provide evidence that treatment-related brain connectivity change is dependent on the TNF-α level in MDD patients, and the MPFC-striatum connectivities possibly serve as an important target in the brain.
Vision navigation using environmental features has been widely applied when satellite signals are not available. However, the matching performance of traditional environmental features such as keypoints degrades significantly in weakly textured areas, deteriorating navigation performance. Further, the user needs to evaluate and assure feature matching quality. In this paper, a new feature, named Line Segment Intersection Feature (LSIF), is proposed to solve the availability problem in weakly textured regions. Then a combined descriptor involving global structure and local gradient is designed for similarity comparison. To achieve reliable point-to-point matching, a coarse-to-fine matching algorithm is developed, which improves the performance of the point set matching algorithm. Finally, a framework of matching quality evaluation is proposed to assure matching performance. Through the comparison, it is demonstrated that the proposed new feature has superior overall performance especially on correctly matched numbers of keypoints and matching correctness. Also, using real image sets with weak texture, it is shown that the proposed LSIF can achieve improved navigation solutions with high continuity and accuracy.
We report a novel approach to the instantaneous photoinitiated synthesis of mixed anatase-rutile nanocrystalline TiO2 thin films with a three-dimensional nanostructure through pulsed white light irradiation of photosensitive Ti-organic precursor films. Pulsed photoinitiated pyrolysis accompanied by instantaneous self-assembly and crystallization occurred to form graphitic oxides-coated TiO2 nanograins. Subsequent pulsed light irradiation working as in situ pulsed photothermal treatment improved the crystalline quality of TiO2 film despite its low attenuation of light. The non-radiative recombination of photogenerated electrons and holes in TiO2 nanograins, coupled with inefficient heat dissipation due to low thermal conductivity, produces enough heat to provide the thermodynamic driving force for improving the crystalline quality. The graphitic oxides were reduced by pulsed photothermal treatment and can be completely removed by oxygen plasma cleaning. This photoinitiated nanofabrication technology opens a promising way for the low-cost and high-throughput manufacturing of nanostructured metal oxides as well as TiO2 nanocrystalline thin films.
Fetal growth discordance is a relatively common complication of monochorionic diamniotic (MCDA) twin pregnancies and is caused by a combination of maternal and placental factors. The aim of the study was to survey placental gene expression patterns and identify genes associated with growth discordance. Clinical samples comprised eight growth-discordant MCDA twin placentas (31+3–34+4 weeks gestational age) and six growth-concordant twin placentas (31+2–37 weeks gestational age). Gene expression libraries were constructed from placental biopsy samples and analyzed by RNA-sequencing. The distribution and relative abundance of mRNA transcripts expressed in the smaller and larger placentas from growth-discordant and concordant MCDA twins was remarkably similar. However, leptin (LEP) and age-related maculopathy susceptibility 2 (ARMS2) mRNA levels were exclusively up-regulated in all of the eight smaller growth-discordant twin placentas. Quantitative real-time PCR of independent biopsy samples confirmed the levels of differential mRNA expression for both genes. Immunohistochemical analysis of tissue sections from matching twin placentas showed increased leptin expression in 5–10% of blood vessel cells of the smaller placenta and marginally higher levels of ARMS2 expression in the microvillous membrane of the smaller placenta. Based on these findings, we speculate that up-regulation of leptin and ARMS2 forms part of an important survival mechanism to compensate for placental growth discordance. Since, leptin and ARMS2 are both expressed as soluble proteins, they may have clinical potential as measurable biomarkers for predicting the onset of growth discordance in MCDA twin pregnancies.
We investigated the boron isotopic composition in loess–paleosol sequences in five different profiles in the Chinese Loess Plateau. Three possible boron sources are identified: atmospheric input, carbonates, and weathered silicate rocks. Variations of [Sr], [B], δ11B and the magnetic susceptibility correlate well with the pedogenetic intensity in three out of the five studied profiles, where pedogenesis under a cold–dry climate indicates lower δ11B, lower [B], lower magnetic susceptibility and higher [Sr] values. Exceptions to the variations between the δ11B and other known proxies were observed in arenaceous soils and the Red Clay sequence: the former suggested that vertical redistribution probably occurred with the boron migration, and the latter indicated an unknown mechanism of susceptibility enhancement. A better correlation between the δ11B and magnetic susceptibility and the quantitative estimation of boron budget from each source confirms the influence of paleoenvironmental changes on boron geochemical cycle. Significant positive correlations in Sr/Ca vs. B/Ca and Mg/Ca vs. B/Ca reflect consistent enrichment behavior of those mobile elements into calcium carbonate. The preliminary results imply that boron isotopic compositions in soils can be a potential geochemical proxy to reconstruct the paleoenvironmental changes in loess–paleosol sequences.
The composite Li-ion battery anode material of Fe2SiO4, Fe3O4, Fe3C (Fe-Si-O) and carbon nanotubes was prepared by a simple one-step reaction between ferrocene and tetraethyl orthosilicate. When cycled at 100 mA g-1, this material exhibited ever-increasing capacities and reached 588 mAh g-1 at the 280th cycle. At 500 mA g-1, a reversible capacity of 350 mAh g-1 was retained for 600 cycles. Compared with Fe3O4 materials, the Fe-Si-O/CNT exhibited superior long-term high-rate performance, which could mainly result from its enhanced stability and conductivities by introducing silicates and CNTs during the one-step synthesis.
Objective: To study the relationship of Nε-(carboxymethyl)-lysine level (CML)
with microstructure changes of white matter (WM), and cognitive impairment
in patients with type 2 diabetes mellitus (T2DM) and to discuss the
potential mechanism underlying T2DM-associated cognitive impairment. Methods: The study was performed in T2DM patients (n=22) with disease course
≥5 years and age ranging from 65 to 75 years old. A control group consisted
of 25 sex- and age-matched healthy volunteers. Fractional anisotropy (FA) of
several WM regions was analyzed by diffusion tensor imaging scan. Plasma CML
levels were measured by enzyme-linked immunosorbent assay, and cognitive
function was assessed by Mini-Mental State Examination and Montreal
cognitive assessment (MoCA). Results: The total Mini-Mental State Examination score in the patient group
(25.72±3.13) was significantly lower than the control group (28.16±2.45)
(p<0.05). In addition, the total MoCA score in the patient group
(22.15±3.56) was significantly lower than the control group 25.63±4.12)
(p<0.01). In the patient group, FA values were significantly decreased in
the corpus callosum, cingulate fasciculus, inferior fronto-occipital
fasciculus, parietal WM, hippocampus, and temporal lobes relative to
corresponding regions of healthy controls (p<0.05). Plasma CML level was
negatively correlated with average FA values in the global brain (r=−0.58,
p<0.01) and MoCA scores (r=−0.47, p<0.05). Conclusions: In T2DM, WM microstructure changes occur in older patients, and
elevations in CML may play a role in the development of cognitive
impairment.
To prospectively investigate the incidence and prevalence of Wilson disease (WD) in Chinese Han population in Anhui Province, to analyze the genetic mutations in individuals with WD, and to provide basic epidemiological data regarding WD in this Chinese Han population.
Methods:
Between November 2008 and June 2010, individuals aged from 7 to 75 years were screened for the cornea K-F ring in both eyes using slit lamp examination and random sampling methods based on age stratification and cluster level 1. The participants were from Anhui Province's Hanshan County, Jinzhai County, and Lixin County. The clinical manifestations of the brain, liver, kidney, skin, and other organs in each individual were also determined. Individuals with positive K-F rings and clinical manifestations indicative of WD underwent copper biochemistry evaluations, abdominal ultrasound testing, and ATP7B gene mutation screening to confirm or exclude the diagnosis of WD.
Results:
Of 153,370 individuals investigated in this study, nine were diagnosed with WD. In these WD individuals, three cases had neurological symptoms, one has hepatic symptoms, one was hepatic and neurological combined, and the other four cases were presymptomatic. Of the eight individuals in whom genetic mutations were detected, seven individuals had mutations in the ATP7B gene. The other individual had no ATP7B gene mutations but her copper biochemical test results met the diagnostic criteria for WD. The incidence and prevalence of WD in this population were approximately 1.96/100,000 and 5.87/100,000 respectively.
Conclusions:
The Chinese Han population had a higher average prevalence of WD than the populations of the United States or Europe.
The hot ductility of Ti-bearing steel was studied by theoretical calculation and athermal simulation experiment. Meanwhile, microsegregation and precipitates were analyzed.The results showed that the S, P and O elements were enriched at the grain boundaries,while the hot ductility was deteriorated by inclusions of (Fe, Mn, Si, Al)(S,O) in theinterdendritic region. At a temperature of 1300 °C, large TiN particles have little effecton the hot ductility. In the temperature range from 1000 °C to 900 °C, the Reduction ofArea (R.A) declined rapidly from 81.77%to 31.77%, with the size of particles decreasing from 5 to 20 nm and quantity increasingfrom 1.2 inds/μm2 to 354 inds/μm2,respectively. In the temperature range from 900 °C to 850 °C,R.A decreased from 31.77% to 30.12%with the ferric films gradually thickening. The critical stress, 63.58 MPa, was equal totensile strength at 912 °C. Intergranular fracture occurred easily with higher criticalstress below 912 °C.
In recent years, platinum-based single crystalline nanoalloys as nanoscale catalysts, such as Pt-M (M = Ni, Co, Fe..etc.), have exhibited improved catalytic performance due to the increase in the surface-to-volume ratio. Some Pt-M nanopolyhedra such as nanocubes and nano-octahedra have been reported with enhanced activity when being used as electrocatalysts. In order to further establish a correlation between the exposed nanocrystal facets (shapes) and their corresponding activities, a pursuit of shape-controlled nanocatalyst synthesis is essential. Although PtPb nanoalloys have been prepared using solution-based methods, few studies have highlighted their catalytic activity as a function of the nanocrystal shape. This work focuses on a modified polyol synthesis technique and an adjustment of the Pb-metal precursor, which serves as a “buffer” in the nucleation stage of the shape-controlled nanoalloy development. Using this developed synthetic strategy, shape-controlled hexagonally close-packed PtPb nanoalloys can be prepared in a one-pot synthesis without additional post-treatment. The as-prepared PtPb nanocrystals demonstrate an improved anode electrocatalytic performance.