We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The second home-made single stage accelerator mass spectrometer (SSAMS) system dedicated to radiocarbon (14C) measurements was built after the first SSAMS system was moved to Guangxi Normal University. With some improvements to the second SSAMS system, the performance has been improved. With the conditions of total ion energy of 200KeV, ions charge states of 1+ and helium as stripper gas, 14C measurements with precision of 0.5% and a background level of 0.5 pMC were achieved. Details of the system and the experimental performance are given here.
A nanostructured surface layer was fabricated in the surface of 316L stainless steel by a novel fast multiple rotation rolling (FMRR) technique. The microstructure and the tensile properties of the treated sample were investigated in detail. The experimental results indicate that a nanograined (NG) film was successfully obtained in the surface of the sample. Equiaxed nanograins with the average grain size of about 12 nm are achieved in the surface layer. At the sample time, deformation-induced α-martensite is produced during the FMRR treatment. The volume fraction of martensite is about 20%. The yield strength (0.2% offset) of the sample, of which one side is of NG structure and the other is coarse grained (CG), is increased by 51% in comparison with that of the CG sample. Though the plasticity is diminished slightly for the FMRR specimen, the elongation still reaches a high value of about 38% owing to the contribution of the CG structure.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.