We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) lacks a rigorous enrollment audit process, unlike other collaborative networks. Most centers require individual families to consent to participate. It is unknown whether there is variation across centers or biases in enrollment.
Methods:
We used the Pediatric Cardiac Critical Care Consortium (PC4) registry to assess enrollment rates in NPC-QIC for those centers participating in both registries using indirect identifiers (date of birth, date of admission, gender, and center) to match patient records. All infants born 1/1/2018–12/31/2020 and admitted 30 days of life were eligible. In PC4, all infants with a fundamental diagnosis of hypoplastic left heart or variant or who underwent a surgical or hybrid Norwood or variant were eligible. Standard descriptive statistics were used to describe the cohort and center match rates were plotted on a funnel chart.
Results:
Of 898 eligible NPC-QIC patients, 841 were linked to 1,114 eligible PC4 patients (match rate 75.5%) in 32 centers. Match rates were lower in patients of Hispanic/Latino ethnicity (66.1%, p = 0.005), and those with any specified chromosomal abnormality (57.4%, p = 0.002), noncardiac abnormality (67.8%, p = 0.005), or any specified syndrome (66.5%, p = 0.001). Match rates were lower for patients who transferred to another hospital or died prior to discharge. Match rates varied from 0 to 100% across centers.
Conclusions:
It is feasible to match patients between the NPC-QIC and PC4 registries. Variation in match rates suggests opportunities for improvement in NPC-QIC patient enrollment.
Ensuring equitable access to health care is a widely agreed-upon goal in medicine, yet access to care is a multidimensional concept that is difficult to measure. Although frameworks exist to evaluate access to care generally, the concept of “access to genomic medicine” is largely unexplored and a clear framework for studying and addressing major dimensions is lacking.
Methods:
Comprised of seven clinical genomic research projects, the Clinical Sequencing Evidence-Generating Research consortium (CSER) presented opportunities to examine access to genomic medicine across diverse contexts. CSER emphasized engaging historically underrepresented and/or underserved populations. We used descriptive analysis of CSER participant survey data and qualitative case studies to explore anticipated and encountered access barriers and interventions to address them.
Results:
CSER’s enrolled population was largely lower income and racially and ethnically diverse, with many Spanish-preferring individuals. In surveys, less than a fifth (18.7%) of participants reported experiencing barriers to care. However, CSER project case studies revealed a more nuanced picture that highlighted the blurred boundary between access to genomic research and clinical care. Drawing on insights from CSER, we build on an existing framework to characterize the concept and dimensions of access to genomic medicine along with associated measures and improvement strategies.
Conclusions:
Our findings support adopting a broad conceptualization of access to care encompassing multiple dimensions, using mixed methods to study access issues, and investing in innovative improvement strategies. This conceptualization may inform clinical translation of other cutting-edge technologies and contribute to the promotion of equitable, effective, and efficient access to genomic medicine.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.