We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
CuInS2 films are often grown in a two-step process with the deposition of a Cu-In alloy followed by high temperature sulphurisation in either S vapour or H2 S. Numerous techniques exist for the deposition of Cu-In. In this work Cu-In films have been deposited on tin oxide coated glass using the electroless deposition technique, a low cost, low temperature approach. The films were found to consist of a two layered structure. Initially, Cu islands grew forming a layer on the substrate. The deposition process subsequently produced dendritic Cu-In alloys from the tops of the Cu islands. Various CuIn phases were observed, namely Cu9In4 and CuIn, the presence of which was related to the solution pH. None of the films were found to contain metallic In, indicating that this process may be well suited to subsequent high temperature sulphurisation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.